期刊文献+

A New Gluing Recursive Relation for Linear Sigma Model of P^1-orbifold

A New Gluing Recursive Relation for Linear Sigma Model of P^1-orbifold
原文传递
导出
摘要 The study of the moduli space plays an important role in classical enumerative geometry and its interaction with string theory in physics. Given X=[P1/Zr] and let x' = ([0]a , [∞]b) the 2-tuple of twisted sectors on X , we construct in this paper two different compactifications of the moduli space M0,2(X, d[P1/Zr], x'): Nonlinear Sigma Model Mx'd and Linear Sigma Model Nx'd . Relations between Mx'd and Nx'd are studied and a new gluing recursive relation on Nx'd is derived from Mx'd due to virtual localization formula. The study of the moduli space plays an important role in classical enumerative geometry and its interaction with string theory in physics. Given X=[P1/Zr] and let x' = ([0]a , [∞]b) the 2-tuple of twisted sectors on X , we construct in this paper two different compactifications of the moduli space M0,2(X, d[P1/Zr], x'): Nonlinear Sigma Model Mx'd and Linear Sigma Model Nx'd . Relations between Mx'd and Nx'd are studied and a new gluing recursive relation on Nx'd is derived from Mx'd due to virtual localization formula.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第9期1757-1772,共16页 数学学报(英文版)
基金 supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20100181110071) National Natural Science Foundation of China (Grant No. 11071176),supported by National Natural Science Foundation of China (Grant Nos. 11071173 and 11221101) Hundred Talents Program for Young Teachers (Grant No. SWJTU12BR028)
关键词 Orbifold Gromov–Witten invariant nonlinear (linear) Sigma model orbi-gluing recursive relation Orbifold Gromov–Witten invariant nonlinear (linear) Sigma model orbi-gluing recursive relation
  • 相关文献

参考文献23

  • 1Abramovich, D., Graber, T., Vistoli, A.: Gromov-Witten theory of Deligne-Mumford stacks. Amer. d. Math., 130(5), 1337-1398 (2008).
  • 2Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology, Cambridge University Press, Cambridge, 2007.
  • 3Chen, B., Li, A.: Symplectic virtual localization of Gromov-Witten invariants. ArXiv:math/0610370v1, 2006, preprint.
  • 4Chen, B., Li, A., Zhang, Q., et al.: Singular symplectic flops and Ruan cohomology. Topology, 48, 1-22 (2009).
  • 5Chen, B., Tian, G.: Virtual orbifolds and localization. Acta Math. Sin., Engl. Series, 26(1), 1-24 (2010).
  • 6Chen, W., Ruan, Y.: A new cohomology theory for orbifold. Commun. Math. Phys., 248, 1-31 (2004).
  • 7Chen, W., Ruan, Y.: Orbifold Gromov-Witten theory. Cont. Math., 310, 25-86 (2002).
  • 8Coates, T., Corti, A., Lee, Y., et al.: The quantum orbifold cohomology of weighted projective spaces. Acta Math., 202, 139-193 (2009).
  • 9Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs, 68, Amer. Math. Soc., Providence Rhode Island, 1999.
  • 10Elezi, A.: Mirror symmetry for concavex vector bundles on projective spaces. Int. J. Math. Math. Sci., 3, 159-197 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部