期刊文献+

Dual Toeplitz Operators on the Sphere 被引量:7

Dual Toeplitz Operators on the Sphere
原文传递
导出
摘要 Dual Toeplitz operators on the Hardy space of the unit circle are anti-unitarily equivalent to Toeplitz operators. In higher dimensions, for instance on the unit sphere, dual Toeplitz operators might behave quite differently and, therefore, seem to be a worth studying new class of Toeplitz-type operators. The purpose of this paper is to introduce and start a systematic investigation of dual Toeplitz operators on the orthogonal complement of the Hardy space of the unit sphere in Cn . In particular, we establish a corresponding spectral inclusion theorem and a Brown-Halmos type theorem. On the other hand, we characterize commuting dual Toeplitz operators as well as normal and quasinormal ones. Dual Toeplitz operators on the Hardy space of the unit circle are anti-unitarily equivalent to Toeplitz operators. In higher dimensions, for instance on the unit sphere, dual Toeplitz operators might behave quite differently and, therefore, seem to be a worth studying new class of Toeplitz-type operators. The purpose of this paper is to introduce and start a systematic investigation of dual Toeplitz operators on the orthogonal complement of the Hardy space of the unit sphere in Cn . In particular, we establish a corresponding spectral inclusion theorem and a Brown-Halmos type theorem. On the other hand, we characterize commuting dual Toeplitz operators as well as normal and quasinormal ones.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第9期1791-1808,共18页 数学学报(英文版)
基金 Supported by King Saud University, Deanship of Scientific Research, College of Science Research Center
关键词 Dual Toeplitz operator Hardy space of the unit sphere COMMUTING Brown-Halmos theorem spectral inclusion QUASINORMAL Dual Toeplitz operator Hardy space of the unit sphere commuting Brown-Halmos theorem spectral inclusion quasinormal
  • 相关文献

参考文献4

二级参考文献30

  • 1Yu Feng LU Shu Xia SHANG.Commuting Dual Toeplitz Operators on the Polydisk[J].Acta Mathematica Sinica,English Series,2007,23(5):857-868. 被引量:8
  • 2Yu, T., Wu, S.: Commuting dual Toeplitz operators on the orthogonal complement of the Dirichlet space. Acta Math. Sinica, English Series, to appear
  • 3Stroethoff, K., Zheng, D.: Algebraic and spectral properties of dual Toeplitz operaors. Trans. Amer. Math. Soc., 354, 2495-2520 (2002)
  • 4Lu, Y.: Commuting dual Toeplitz operators with pluriharmonic symbols. J. Math. Anal. Appl., 302, 149-156 (2005)
  • 5Lu, Y., Shang, S.: Commuting dual Toeplitz operators on the polydisc. Acta Mathematica Sinica, English Series, 23(5), 857-868 (2007)
  • 6Cheng, G., Yu, T.: Commuting dual Toeplitz operators on the Bergman space of the polydisc. Chin. Quart. J. Math., to appear
  • 7Yu, T., Cheng, G.: Essentially commuting dual Toeplitz operators on the polydisc. Acta Mathematica Sinica Chinese Series, 50(5), 1007-1016 (2007)
  • 8Wu, Z.: Hankel and Toeplitz operators on Dirichlet spaces. Integ. Equ. Oper. Theory, 15, 503-525 (1992)
  • 9Wu, Z.: Operator theory and function theory on Dirichlet space, "Analytic Spaces" ed. by S. Axler, J. McCarthy and D. Sarason, MSRI, 179-199, 1998
  • 10Cao, G.: Fredholm properties of Toeplitz operators on Dirichlet space. Pacific J. Math., 188(2), 209-224 (1999)

共引文献20

同被引文献12

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部