期刊文献+

A Note on Holonomy of Gerbes over Orbifolds

A Note on Holonomy of Gerbes over Orbifolds
原文传递
导出
摘要 In this paper, we generalize the construction of the inverse transgression map done by Adem, A., Ruan, Y. and Zhang, B. in [A stringy product on twisted orbifold K-theory. Morfismos, 11, 33 64 (2007)] and give a different proof to the statement that the image of the inverse transgression map for a gerbe with connection over an orbifold is an inner local system on its inertia orbifold. In this paper, we generalize the construction of the inverse transgression map done by Adem, A., Ruan, Y. and Zhang, B. in [A stringy product on twisted orbifold K-theory. Morfismos, 11, 33 64 (2007)] and give a different proof to the statement that the image of the inverse transgression map for a gerbe with connection over an orbifold is an inner local system on its inertia orbifold.
作者 Xiao Qin YIN
机构地区 Mathematical College
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第10期1973-1980,共8页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11071176)
关键词 GERBE ORBIFOLD Lie groupoid inner local system HOLONOMY Gerbe, orbifold, Lie groupoid, inner local system, holonomy
  • 相关文献

参考文献1

  • 1PAN JianZhong~1 RUAN YongBin~(2,3) YIN XiaoQin~(1,3+) 1 Institute of Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China,2 Department of Mathematics,University of Wisconsin-Madison,WI 53706,USA,3 Department of Mathematics,The Hong Kong University of Science and Technology,Hong Kong,China.Gerbes and twisted orbifold quantum cohomology[J].Science China Mathematics,2008,51(6):995-1016. 被引量:1

二级参考文献27

  • 1Weimin Chen,Yongbin Ruan.A New Cohomology Theory of Orbifold[J]. Communications in Mathematical Physics . 2004 (1)
  • 2Ernesto Lupercio,Bernardo Uribe.Gerbes over Orbifolds and Twisted K-Theory[J]. Communications in Mathematical Physics . 2004 (3)
  • 3Alejandro Adem,Yongbin Ruan.Twisted Orbifold K-Theory[J]. Communications in Mathematical Physics . 2003 (3)
  • 4I. Moerdijk,D. A. Pronk.Orbifolds, Sheaves and Groupoids[J]. K - Theory . 1997 (1)
  • 5Chen W,Ruan Y.A new cohomology theory for orbifold. Communications in Mathematical Physics . 2004
  • 6Ruan Y.Cohomology ring of crepant resolutions of orbifolds.Gromov-Witten theory of spin curves and orbifolds. Contemporary Mathematics . 2006
  • 7Vafa C,Witten E.On orbifolds with discrete torsion. Journal of Applied Geophysics . 1995
  • 8Ruan Y.Discrete torsion and twisted orbifold cohomology. J Symplectic Geom . 2003
  • 9Lupercio E,Uribe B.Gerbes over orbifolds and twisted K-theory. Communications in Mathematical Physics . 2004
  • 10Tu J,Xu P,Laurent-Gengoux C.Twisted K-theory of differentiable stacks. Ann Sci (?)cole Norm Sup . 2004

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部