期刊文献+

Canonical solitons associated with generalized Ricci flows 被引量:2

Canonical solitons associated with generalized Ricci flows
原文传递
导出
摘要 We construct the canonical solitons,in terms of Cabezas-Rivas and Topping,associated with some generalized Ricci flows. We construct the canonical solitons, in terms of Cabezas-Rivas and Topping, associated with some generalized Ricci flows.
出处 《Science China Mathematics》 SCIE 2013年第10期2007-2013,共7页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11025107,10831008 and 10901165) the Fundamental Research Funds for Central Universities(Grant No.201034000-3162643) High Level Talent Project in High Schools in Guangdong Province(Grant No.34000-5221001) the Fundamental Research Funds for the Central Universities(Grant No.101gpy25) China Post-doctoral Science Foundation(Grant No.201003382)
  • 相关文献

参考文献14

  • 1Cabezas-Rivas E, Topping P. Canonical shrinking solitons associated to a Ricci flow. Calc Var Partial Differential Equations, 2012, 43: 173-184.
  • 2Cabezas-Rivas E, Topping P. Canonical expanding soliton and Harnack ineqalities for Ricci flow. Trans Amer Math Soc, 2012, 364: 3001-3021.
  • 3Hamilton R. Three manifolds with positive Ricci curvature. J Differ Geom, 1982, 17: 255-306.
  • 4Li P, Yau S T. On the parabolic kernel of the Schr?dinger operator. Acta Math, 1986, 156: 153-201.
  • 5Lott J. Optimal transport and Perelman's reduce volume. Calc Var Partial Differential Equations, 2009, 36: 49-84.
  • 6Mccann R J, Topping P. Ricci flow, entropy and optimal transportation. Amer J Math, 2010, 132: 711-730.
  • 7Müller R. Ricci flow coupled with harmonic map flow. Ann Sci Ec Norm Super, 2012, 45: 101-142.
  • 8Oliynyk T, Suneeta V, Woolgar E. A gradient flow for nonlinear sigma models. Nuclear Phys B, 2006, 739: 441-458.
  • 9Perelman G. The entropy formula for the Ricci flow and its geometric applications. ArXiv.org/math.DG/0211159v1,2002.
  • 10Von Renesse M K, Sturm K T. Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm Pure Appl Math, 2005, 58: 923-940, 153-201.

二级参考文献34

  • 1Xiao Dong WANG(Xiaodong Wang).On the Uniqueness of the ADS Spacetime[J].Acta Mathematica Sinica,English Series,2005,21(4):917-922. 被引量:1
  • 2Aubin T. Equations du type Monge-Ampere sur les varietes Kahleriennes compactes. C R Acad Sci Paris,1976,283: 119-121.
  • 3Chau A. Convergence of the Kahler Ricci ow on noncompact Kahler manifolds. J Di Geom,2004,66: 211-232.
  • 4Cheng S Y,Li P,Yau S T. On the upper estimate of the heat kernel of complete Riemannian manifold. Amer J Math, 1981,103: 1021-1063.
  • 5Cheng S Y,Yau S T. On the existence of a complete Kahler Einstein metric on non-compact complex manifolds and the regularity of Fe erman’s equation. Comm Pure Appl Math,1980,33: 507-544.
  • 6Demailly J P. Regularization of closed positive currents and intersection theory. J Alg Geom,1992,1: 361-409.
  • 7Greene R E,Wu H. C∞ approximation of convex,subharmonic and plurisubharmonic functions. Ann Sci Ec Norm Sup,1979,12: 47-84.
  • 8Li P,Tam L F. The heat equation and harmonic maps of complete manifolds. Invent Math,1991,105: 1-46.
  • 9Li P,Yau S T. On the parabolic kernel of the Schro¨dinger operator. Acta Math,1986,156: 153-201.
  • 10Mok N,Yau S T. Completeness of the Kahler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. The Mathematical Heritage of Henri Poincar′e. Providence,RI: Amer Math Soc,1983.

共引文献1

同被引文献14

  • 1Cabezas-Rivas E, Topping P. Canonical shrinking solitons associated to a Ricci flow. Calc Var Partial Differential Equations, 2012, 43: 173-184.
  • 2Cabezas-Rivas E, Topping P. Canonical expanding soliton and Harnack ineqalities for Ricci flow. Trans Amer Math Soc, 2012, 364: 3001-3021.
  • 3Hamilton R. Three manifolds with positive Ricci curvature. J Differ Geom, 1982, 17: 255-306.
  • 4Li P, Yau S T. On the parabolic kernel of the Schr?dinger operator. Acta Math, 1986, 156: 153-201.
  • 5Lott J. Optimal transport and Perelman's reduce volume. Calc Var Partial Differential Equations, 2009, 36: 49-84.
  • 6Mccann R J, Topping P. Ricci flow, entropy and optimal transportation. Amer J Math, 2010, 132: 711-730.
  • 7Müller R. Ricci flow coupled with harmonic map flow. Ann Sci Ec Norm Super, 2012, 45: 101-142.
  • 8Oliynyk T, Suneeta V, Woolgar E. A gradient flow for nonlinear sigma models. Nuclear Phys B, 2006, 739: 441-458.
  • 9Perelman G. The entropy formula for the Ricci flow and its geometric applications. ArXiv.org/math.DG/0211159v1,2002.
  • 10Von Renesse M K, Sturm K T. Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm Pure Appl Math, 2005, 58: 923-940, 153-201.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部