期刊文献+

基于博弈论方法的线性马尔可夫跳变系统H_∞控制 被引量:2

H_∞ Control Based on Game Theory Approach for Markov Jump Linear Systems
原文传递
导出
摘要 应用微分博弈理论研究了噪声依赖于状态x(t)、控制u(t)和干扰v(t)的Ito型线性马尔可夫跳变系统H∞鲁棒控制设计问题.首先将系统的控制变量u(t)视为博弈的一方,随机性干扰v(t)视为博弈的另一方,从而把H∞鲁棒控制问题转化为一个二人零和微分博弈问题,然后通过分析此微分博弈问题得到了H∞鲁棒控制存在的条件等价于相应的矩阵Riccati代数方程存在解,同时给出了H∞鲁棒控制策略的显式表达式,最后给出数值算例验证了其可行性. A game approach to H∞robust control for Markov jump linear systems with (x, u, v)-dependent noise described by an It6-type equation is presented. By viewing the control variable u(t) and stochastic disturbance v(t) of the system as oneplayer and the other player respectively, the H∞ robust control problem is transformed into a two-person zero-sum diflbrential game model. Moreover, by solving this differential game, it is proved that the existence condition of the H∞ robust control strategy is equivalent to the solvability of the associated Riccati equation, and the explicit formula of the H~ robust control strategy is obtained. Finally, a numeric example is given to prove its feasibility.
出处 《信息与控制》 CSCD 北大核心 2013年第4期423-429,共7页 Information and Control
基金 国家自然科学基金资助项目(71171061) 广东省自然科学基金资助项目(S2011010004970)
关键词 马尔可夫跳变系统 微分博弈 H∞鲁棒控制 Markov jump system differential game H∞ robust control
  • 相关文献

参考文献31

  • 1Zhou K, Doyle J C, Glover K. Robust and optimal control[M]. New Jersey, USA: Prentice Hall, 1996.
  • 2Doyle J C, Glover K, Khargonekar P P, et al. State-space solu- tions to standard H2 and H∞ problems[J]. IEEE Transactions on Automatic Control, 1989, 34(8): 831-847.
  • 3Limebeer D J N, Anderson B D O, Khargonekar P P, et al. A game theoretic approach to H∞ control for time-varying sys- tems[J]. SIAM Journal on Control and Optimization, 1992, 30(2): 262-283.
  • 4Limebeer D J N, Anderson B D O, Hendel B. A Nash game ap- proach to mixed H2/H∞ control[J]. IEEE Transactions on Au- tomatic Control, 1994, 39(1): 69-82.
  • 5Van der Schaft A J. L2-gain analysis of nonlinear systems and nonlinear state feedback H~ control[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 770-784.
  • 6Abu-Khaiaf M, Huang J, Lewis F L. Nonlinear H2/H∞ constrained feedback control control[M]. Berlin, Germany: Springer-Verlag, 2006.
  • 7Friedman A. Stochastic differential equations and applica- tions[M]. New York, USA: Academic Press, 1975.
  • 8Has'minskii R Z. Stochastic stability of differential equa- tion[M]. AA Dordrecht, Netherlands: Kluwer Academic Pub- lishers, 1980.
  • 9Yong J, Zhou X Y. Stochastic control: Hamiltonian systems and HJB equations[M]. Berlin, Germany: Springer-Verlag, 1999.
  • 10Gershon E, Shaked U, Yaesh U. Control and estimation of state multiplicative linear systems[M]. Berlin, Germany: Springer- Verlag, 2005.

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部