期刊文献+

状态饱和奇异离散线性系统的稳定性分析与控制律综合 被引量:1

Stability Analysis and Controller Synthesis for Singular Discrete Linear Systems with State Saturation
原文传递
导出
摘要 研究了状态饱和奇异离散线性系统的稳定性分析与状态反馈控制律综合问题.通过引入无穷范数小于等于1的自由矩阵,将状态饱和奇异离散线性系统的状态变量约束在一个顶点与自由矩阵相关的凸多面体内,从而将状态饱和非线性奇异离散系统的稳定性分析问题转换成具有凸多面体不确定参数的奇异离散线性系统的鲁棒稳定性分析问题,引入自由矩阵来描述奇异离散系统代数子系统变量与差分子系统变量的代数约束关系,给出了状态饱和奇异离散线性系统的正则、因果和渐近稳定的新判据,并给出了相应的状态反馈控制律综合算法.稳定性判据与控制律设计算法以矩阵不等式形式给出,可以使用所提出的迭代线性矩阵不等式算法求解.数值例子验证了算法的有效性与正确性. The problem of stability analysis and state feedback controller synthesis for singular discrete linear systems with state saturation is studied. By introducing a free matrix whose infinity norm is less than or equal to 1, the state variables under saturation constraint are confined in a convex hull whose vertexes are associated with this free matrix. Based on this, the original stability problem of singular discrete systems with state saturation nonlinearity is transformed into the robust stability analysis problem of linear singular discrete systems with polytopic type uncertain parameters. With the introduction of a free matrix to draw the relationship between algebraic subsystem variables and difference subsystem variables, a sufficient criterion for discrete linear singular systems with state saturation to be regular, causal and asymptotically stable, is obtained in terms of matrix inequalities. The corresponding state feedback control law synthesis algorithm is also given. The obtained stability criterion and controller design algorithm are given in terms of matrix inequalities that can be solved using the presented iterative linear matrix inequality algorithm. Numerical examples are used to show that the presented method is applicable and effective.
出处 《信息与控制》 CSCD 北大核心 2013年第4期437-442,共6页 Information and Control
基金 国家自然科学基金资助项目(60904011) 江苏省自然科学基金资助项目(BK2011465) 教育部高等学校博士学科点专项科研基金资助项目(20093227120010) 江苏高校优势学科建设工程资助项目(苏政办发[2011]6号)
关键词 奇异系统 离散系统 状态饱和 迭代线性矩阵不等式 singular system discrete system state saturation iterative linear matrix inequality
  • 相关文献

参考文献2

二级参考文献21

  • 1尹玉娟,刘玉忠,赵军.一类切换线性广义系统的稳定性[J].控制与决策,2006,21(1):24-27. 被引量:24
  • 2V. Singh. A new realizability condition for limit cycle limit state-space digital filters employing saturation arithmetic. IEEE Transactions on Circuits and Systems 1985, 32(3): 1070 - 1071.
  • 3X. Ji, Y. Sun, T. Liu, et al. Stability analysis and controller synthesis for linear time-delay systems with state saturation nonlinearities. International Journal of Systems Science, 2010, 42(3): 397 - 406, 2010.
  • 4V. Singh. Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Transactions on Circuits and Systems 1990, 37(6): 814 - 818.
  • 5J. H. F. Ritzerfeld. A criterion for the overflow stability of secondorder digital filters that is satisfied by all scaled state-space structures using saturation. IEEE Transactions on Circuits and Systems, 1989, 36( 1 ): 49 - 57.
  • 6D, Liu, A, N. Michel. Asymptotic stability of discrete-time systems with saturation nonlinearities with application to digital filters. IEEE Transactions on Circuits and Systems, 1994, 39( 1 ): 789 - 807.
  • 7D. Liu, A. N. Michel. Stability analysis of systems with partial state saturation nonlinearities. IEEE Transactions on Circuits and Systems, 1996, 43(3): 230 - 232.
  • 8H. Kar, V. Singh. Stability analysis of discrete-time systems in a state-space realization with partial state saturation nonlinearities, IEE Proceedings on Control Theory and Applications, 2003, 150( 1 ): 205 - 208.
  • 9V. Singh. Stability analysis of discrete-time of discrete-time systems in a state-space realisation with state saturation nonlinearities: linear matrix inequality approach, lEE Proceedings on Control Theory and Applications, 2005, 152(1): 9-12.
  • 10V. Singh. Modified criterion for global asymptotic stability of fixed- point state-space digital filters using two's complement arithmetic. Automatica, 2010, 46(1): 475-478.

共引文献3

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部