期刊文献+

基于网格连通的联合概率数据关联算法 被引量:4

Joint Probabilistic Data Association Algorithm Based on Grid and Connection
下载PDF
导出
摘要 联合概率数据关联算法具有良好的多目标跟踪性能,但其计算量会随着跟踪目标数和有效量测数的增多而呈指数增长,因此实时性差,难以在工程中应用。在保证准确率和精度的前提下减小确认矩阵的维数,提出了一种关联区域预处理的方法。对目标空间进行网格划分,通过网格的选取形成连通域,再对每个连通域中的目标采用联合概率数据关联算法,从而大量减少关联时间。仿真实验表明,基于网格连通的联合概率数据关联算法具有较强的实时性。 The Joint Probabilistic Data Association Algorithm has good capability in multi-target tracking, but the calculating amount would increase exponentially with the increasing of the number of targets and validated measurements, thus the algorithm has unsatisfactory real-time performance and can't be easily implemented in engineering.On the premise of guaranteeing the accuracy rate and precision, a new method on the preprocessing of the associating area is proposed to reduce the confirmed matrix dimension.The method partitioned the area according to the appropriate size, and chooses grids to form the connected area, then applies joint probability data association to different area individually, thus can decrease the associated time greatly.Simulations verify that the joint probabilistic data association algorithm based on grid and connection has better real-time performance.
出处 《电光与控制》 北大核心 2013年第9期34-36,92,共4页 Electronics Optics & Control
基金 海洋环境立体监测系统技术研究
关键词 联合概率数据关联 网格划分 连通域 关联时间 joint probabilistic data association grid partitioning connected area associated time
  • 相关文献

参考文献8

  • 1FORMAN T E, BAR-SHALOM Y, SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association [J]. IEEE Journal of Oceanic Engineering, 1983, 8(3) :173-183.
  • 2FITZGERALD R J. Development of practical PDA logic for multi-target tracking by microprocessor[ C]//Proceedings of American Control Conference, Seattle, WA, 1986:889-898.
  • 3ZHOU B, BOSE N P. Multi-target tracking in clutter:Fastal-gorithm for data association[ J ]. IEEE Transactions on Aero- space and Electronic Systems, 1993, 29(2) :352-363.
  • 4程洪玮,周一宇,孙仲康.快速JPDA算法的递归和并行实现[J].系统工程与电子技术,1999,21(4):43-50. 被引量:10
  • 5WU Wei. Multi-target tracking in clutter using two-scan data association algorithm and fixed-lag smoothing [ J ]. IEEE, Systems and Control in Aeronautics and Astronautics, 2010 : 196-201.
  • 6BAR-SHALOM Y, DAUM F, HUANG J. The probabilistic data association filter[ J ]. IEEE Control Systems Magazine, 2009:82-100.
  • 7SHI Zhangsong, XIAO Sheng, XING Changfeng. An improved data association algorithm for multi-target tracking [J]. IEEE Computer Society, 2010:553-556.
  • 8SVENSSON L, SVENSSON D, WILLETT P. Set JPDA filter for muhi-target tracking [ J ]. IEEE Transactions on Signal Processing, 2011, 59 (10) :4677-4690.

二级参考文献5

  • 1钱颂迪,运筹学(第2版),1990年
  • 2Gong D,Int J Project Managements,1995年,3期,187页
  • 3吴之明,系统工程理论与实践,1994年,9期,1页
  • 4寺野寿郎,模糊系统理论及应用,1991年
  • 5刘锡荟,网络模糊随机分析.原理、方法与程序,1991年

共引文献9

同被引文献8

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部