期刊文献+

多模式资源受限项目调度问题的优化方法

An Optimal Approach for Solving Multi-mode Resource-constrained Project Scheduling Problem
下载PDF
导出
摘要 为求解多模式资源受限项目调度问题,提出了一种结合粒子群优化算法(PSO)和基因表达式编程(GEP)的混合优化算法。其中,PSO用来提供活动执行模式组合,GEP用来构造在给定活动执行模式下的调度规则。调度规则由项目状态和活动属性构成,与其他优化方法相比,这是一种新的编码方式与求解方法,也更符合实际应用。对于粒子所表达的不可行活动模式的组合,设计了粒子调整算法,以满足项目调度中可更新资源和不可更新资源总数的约束。最后给出了混合优化算法求解步骤,并采用该算法对项目实例进行了计算与分析,验证了算法的有效性。 In order to solve multi-mode resource-constrained project scheduling problem (MMRCPSP), a hybrid optimization method integrated particle swarm optimization (PSO) with gene expression programming (GEP) is proposed, where PSO is used to search the mode combination for all activities and GEP is applied to construct the effective scheduling rule to determine the priority of activities with given mode combination. The scheduling rule is the algebraic combination of project status and attributes of activity, which is a new representation form of solution compared with other optimal algorithms for MMRCPSP and is more suitable for the real- world application. The procedure to check and adjust the infeasible particle-represented mode combination is designed to meet the limi- tations on the total number of renewable and non-renewable resources. At last, the framework of the proposed method for MMRCPSP is introduced and experimental analysis is presented to investigate the performance of the method.
出处 《西华大学学报(自然科学版)》 CAS 2013年第5期1-7,共7页 Journal of Xihua University:Natural Science Edition
基金 教育部"春晖计划"合作科研项目(Z2012017)
关键词 资源受限项目调度 粒子群优化算法 基因表达式编程 调度规则 resource-constrained project scheduling particle swarm optimization gene expression programming scheduling rule
  • 相关文献

参考文献13

  • 1Heilmann R. A Branch-and-Bound Procedure ior the Multi- mode Resource-constrained Project Scheduling Problem with Minimum and Maximum Time Lags [ J ]. European Journal of Operational Re- search, 2003, 144:348-365.
  • 2Buddhakulsomsiri J, Kim D S. Priority Rule-based Heuristic for Multi-mode Resource-constrained Project Scheduling Problems with Re- source Vacations and Activity Splitting [ J ]. European Journal of Opera- tional Research, 2007, 178 : 374 - 390.
  • 3Najid N M, Arroub M. An Efficient Algorithm for the Multi- mode Resource Constrained Project Scheduling Problem with Resource Flexibility [ J]. International Journal of Mathematics in Operational Re- search, 2010, 2(6) : 748 -761.
  • 4Hartmann S. Project Scheduling with Multiple Modes : a Genetic Algorithm [ J . Annals of Operations Research, 2001, 102 : 111 - 135.
  • 5Zhang H, Tam C M, Li H. Multimode Project Scheduling basedon Particle Swarm Optimization [ J ]. Computer-Aided Civil and Infra- structure Engineering, 2006, 21:93 -103.
  • 6Tay J C, Ho N B. Evolving Dispatching Rules using Genetic Programming for Solving Multi-objective Flexible Job-shop Problems [ J ]. Computers & Industrial Engineering, 2008, 54:453 -473.
  • 7Jakobov d D, Budin L. Dynamic Scheduling with Genetic Pro- gramming [ C ]//Proceedings of the 9th European Conference on Genetic Programming. Berlin : Springer-Verlag, 2006, LNCS 3905 : 73 - 84.
  • 8Dimopoulos C, Zalzala A M S. Investigating the Use of Genetic Programming for a Classic One-machine Scheduling Problem [ J ]. Ad- vanced in Engineering Software, 2001, 32:489-495.
  • 9Nie L, Shao X Y, Gao L, et al. Evolving Scheduling Rules with Gene Expression Programming for Dynamic Single-machine Schedu- ling Problems [ J ]. International Journal of Advanced Manufacturing Technology, 2010, 50 : 729 - 747.
  • 10Ferreira C. Gene Expression Programming: a New Adaptive Algorithm for Solving Problems [ J ]. Complex Systems, 2001, 13 ( 2 ) : 87 - 129.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部