期刊文献+

相空间中类分数阶变分问题的Noether对称性与守恒量 被引量:20

Noether Symmetry and Conserved Quantity for a Fractional Action-like Variational Problem in Phase Space
下载PDF
导出
摘要 基于El-Nabulsi提出的分数阶动力学建模方法,即类分数阶变分方法,研究相空间中类分数阶变分问题与Noether对称性和守恒量。建立了相空间中类分数阶变分问题,得到了类分数阶Hamilton正则方程;基于类分数阶Hamilton作用量在无限小群变换下的不变性,提出了相空间中类分数阶Noether(准)对称变换的定义和判据;给出了类分数阶Hamilton系统的Noether定理,建立了类分数阶Noether对称性与守恒量之间的内在关系,并举例说明结果的应用。 The Noether symmetry and the conserved quantity for a fractional action-like variational prob- lem in phase space are studied based on the method of fractional dynamics modeling presented by E1- Nabulsi, namely fractional action-like variational approach. First, the fractional action-like variational problem in phase space is established, and the fractional action-like Hamilton canonical equations are ob- tained. Secondly, the definitions and criteria of the fractional action-like Noether (quasi-) symmetrical transformations are presented in terms of the invariance of the fractional action-like integral of Hamilton under the infinitesimal transformation of group. Finally, the Noether theorems for the fractional action- like Hamiltonian system are given, the relationship between the Noether symmetry and the conserved quantity of the system is established. An example is given to illustrate the application of the results.
作者 张毅
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期45-50,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10972151 11272227)
关键词 类分数阶变分方法 NOETHER定理 相空间 类分数阶对称变换 守恒量 fractional action-like variational approach Noether theorem phase space fractional ac-tion-like symmetrical transformation conserved quantity
  • 相关文献

参考文献37

  • 1OLDHAM K B,SPANIER J.The fractional calculus [M].San Diego:Academic Press,1974.
  • 2MILLER K S,ROSS B.An introduction to the fractional integrals and derivatives-theory and applications [M].New York:John Wiley and Sons Inc,1993.
  • 3PODLUBNY I.Fractional differential equations [M].San Diego:Academic Press,1999.
  • 4HILFER R.Applications of fractional calculus in physics [M].Singapore:World Scientific,2000.
  • 5KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations [M].Amsterdam:Elsevier B V,2006.
  • 6RIEWE F.Nonconservative lagrangian and hamiltonian mechanics[J].Phys Rev E,1996,53(2):1890-1899.
  • 7RIEWE F.Mechanics with fractional derivatives [J].Phys Rev E,1997,55(3):3581-3592.
  • 8KLIMEK M.Fractional sequential mechanics-models with symmetric fractional derivative [J].Czechoslovak J Phys,2001,51(12):1348-1354.
  • 9KLIMEK M.Lagrangian and hamiltonian fractional sequential mechanics [J].Czechoslovak J Phys,2002,52(11):1247-1253.
  • 10AGRAWAL 0 P.Formulation of euler-lagrange equations for fractional variational problems [J] .J Math A-nal Appl,2002,272(1):368-379.

同被引文献172

引证文献20

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部