期刊文献+

一种新的基于压缩感知的稀疏音频水印算法 被引量:1

A New Sparse Audio Watermarking Algorithm Based on Compressive Sensing
下载PDF
导出
摘要 提出了一种基于压缩感知的音频水印算法.该算法利用数字水印和音频宿主信号在离散余弦变换域下都具有稀疏性,将水印经过压缩感知处理后,嵌入于音频载体信号的离散余弦变换系数中;在水印提取时,利用压缩感知的去噪原理和重构方法,在不利用原宿主信号情况下,将水印提取出来,此提取完全是盲提取.计算机仿真实验表明,这种算法能提高水印在高斯噪声攻击下的鲁棒性. This paper presents an audio watermark algorithm based on compressive sensing (CS). The algorithm takes the advantage of the feature that the digital watermark and host audio signal are both sparse in discrete cosine tran6form(DCT) domains. The watermark that has been processed embeds the host audio signal's DCT coefficients. This audio watermark extraction is done completely blindly by the CS denoising theory and reconstruction method. Computer simulation shows that this algorithm can increase watermarks' robustness under the attack of the gaussian noise.
出处 《北方工业大学学报》 2013年第3期1-5,30,共6页 Journal of North China University of Technology
基金 国家自然科学基金资助项目(No.61170327)
关键词 压缩感知 数字水印 变换域 稀疏 重构算法 compressive sensing(CS) digital watermark transformed domain sparse recon- struction algorithm
  • 相关文献

参考文献22

  • 1Van Schyndel R G,Tirkel A Z,Osborne G F. A digital watermark[J]. Proe. IEEE Int. Conf. Image Processing, 1994, II: 86-90.
  • 2Podilchuk C I,Delp E J. Digital watermarking: al- gorithms and applications [J-]. IEEE Signal Process, 2001,18(4) :33-46.
  • 3Lie W N, Chang L C. Robust and high-quality time-domain audio watermarking based on low- frequency amplitude modification [-J ]. IEEE Transactions on Multimedia, 2006,8(1) :46-59.
  • 4钮心忻,杨义先.基于小波变换的数字水印隐藏与检测算法[J].计算机学报,2000,23(1):21-27. 被引量:129
  • 5Cox I,Kilian J,et al. Secure spread spectrum wa- termarking formultimedia[J-]. IEEE Trans on Im- age Processing, 1997,6(12) : 1673-1687.
  • 6Wolfgong P, Delp E. A watermarking for digital images[-C]. Proc IEEE Internet Conf image pro- cessing, 1996:219-220.
  • 7Candese E. Compressive Sampling[J]. Proeeed- ings of the International Congress of Mathemati- cians. Madrid, Spain: 2006 : 1433-1452.
  • 8Donoho D. Compressed sensing[J]. IEEE Trans, Information, Theory, 2006,52(4) : 1289-1360.
  • 9Donoho D, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006,86 (3).
  • 10Candes E,Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005,51 (12) : 4203-4215.

二级参考文献12

  • 1Swanson M D,Signal Processing,1998年,66卷,337页
  • 2J.F. Tilki, A. A. Beex. Encoding a hidden auxiliary channel onto a digital audio signal using psychoacoustic masking. http:∥citeseer. ist. psu. edu/tilki97encoding. html, 1997.
  • 3Y. Wang. A new watermarking method of digital audio content for copyright protection. The 4th Int'l Conf. Signal Processing,Beijing, 1998.
  • 4L. Boney, A. H. Tewfik, K. Hamdy. Digital watermarks for audio signals. The 1996 Int'l Conf. Multimedia Computing and Systems. http:∥www. almaden. ibm. com/cs/people/dgruhl/313.pdf, 1996.
  • 5C.-C. Tseng, C.-B. Tseng, S.-L. Lee. Audio watermarking based on linear prediction and vector quantization. In:Processdings of CVG1P, 2001.
  • 6J. Lacy, S. R. Quackenbush, A. R. Reibman, et al. On combining watermarking with perceptual coding. In: Proc. Int'l Conf. Acoustics, Speech, and Signal Processing, 1998. 3725~3728.
  • 7Pao-Ta Yu, Hung-Hsu Tsai, Jyh-Shyan Lin. Digital watermarking based on neural networks for color images. Signal Processing, 2001, 81:663~671.
  • 8M. Kutter, F. Jordan, F. Bossen. Digital watermarking of color images using amplitude modulation. Journal of Electron Imaging,1998, 7(2): 326~332.
  • 9Siwei Lyu, Hany Farid. Detecting hidden messages using higherorder statistics and support vector machines. The 5th Int'l Workshop on Information Hiding, Noordwij kerhout,Netherlands, 2002.
  • 10V.N.Vapnik.张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..

共引文献158

同被引文献13

  • 1Tewari T K, Saxena V, Gupta J P. Audio watermarking:current state of art and future objectives[J] . International Journal of Digital Content Technology and Applications, 2011, 5(7):306-313.
  • 2Shervin S, Mahamod I, Nasharuddin Z, et al. Error probability in spread spectrum (SS) audio watermraking[C] //Proc of International Conference on Space Science and Communication. 2013:169-173.
  • 3Xiang Shijun, Huang Jiwu. Histogram based audio watermarking against time scale modification and cropping attacks[J] . IEEE Trans on Multimedia, 2007, 9(7):1357-1372.
  • 4Dutta M K, Gupta P, Pathak V K. A perceptible watermarking algorithm for audio signals[J] . Multimedia Tools and Applications, 2014, 73(2):1-23.
  • 5Eldar Y, Kutyniok G. Compressed sensing:theory and applications[M] . Oxford:Cambridge University Press, 2012:1-40.
  • 6CandèS E, Tao T. Near optimal signal recovery from random projections:universal encoding strategies[J] . IEEE Trans on Information Theory, 2006, 52(12):5406-5425.
  • 7Candès E, Randall P. Highly robust error correction by convex programming[J] . IEEE Trans on Information Theory, 2008, 54(7):2829-2840.
  • 8Laska J, Davenport M, Baraniuk R. Exact signal recovery from sparsely corrupted measurements through the pursuit of justice[C] //Proc of Asilomar Conference on Signals, Systems, and Computers. 2009:1556-1560.
  • 9Sheikh M, Baraniuk R. Blind error-free detection of transform-domain watermarks[C] //Proc of IEEE International Conference on Image Processing. [S. l.] :IEEE Press, 2007:453-456.
  • 10Nguyen N H, Nasrabadi N M, Tran T D. Robust LASSO with missing and grossly corrupted observations[J] . IEEE Trans on Information Theory, 2013, 59(4):2036-2058.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部