期刊文献+

一种基于信号稀疏表示的语音去噪新方法 被引量:1

A Novel Speech De-noising Approach Based on Sparse Representations
下载PDF
导出
摘要 由于小波阈值在语音去噪中阈值的单一性,本文提出了一种基于稀疏表示理论的新的去噪算法.该算法首先用K-SVD字典学习得到信号在字典下的稀疏表示,其次用形态成分分析(Morphological Component Analysis,MCA)将语音信号分为高幅部分和低幅部分,最后用重构方法对各部分语音信号进行重构及合成.通过实验仿真,并与小波阈值去噪方法比较,本文所提方法的去噪效果更好,鲁棒性更强. Due to the wavelet threshold's singleness in speech de-noising,this paper presents a novel speech de-noising approach based on sparse representations (SR). Firstly,the sparse represen- tation of the noisy signal is achieved through K-SVD dictionary learning algorithm. Secondly,Mor- phological Component Analysis(MCA) method is used to separate the speech signals into high-am- plitude part and low-amplitude part. Finally, the two parts of the signals are reconstructed and put together. The simulation result shows that the method has better deoising effect and stronger ro- bustness compared to the wavelet threshold approach.
出处 《北方工业大学学报》 2013年第3期6-11,共6页 Journal of North China University of Technology
基金 国家自然科学基金资助项目(No.61170327)
关键词 稀疏表示 K-SVD 语音去噪 形态成分分析 sparse representation K-SVD speech de-noising morphological component analysis
  • 相关文献

参考文献2

二级参考文献37

  • 1崔华,宋国乡.基于小波阈值去噪方法的一种改进方案[J].现代电子技术,2005,28(1):8-10. 被引量:79
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3A Hyvarinen, J Karhunen, E Oja. Independent component analysis[M]. New York: Wiley, 2001.
  • 4A Belouchrani,K A Merairn, J-F Cardoso, E Moulines. A blind source separation technique based on second order statistics[ J]. reEF, transactions on Signal Processing, 1997, 45 (2) : 434 - 444.
  • 5B A Pearlrnutter, V K Potluru. Sparse separation:Principles and tricks[ A]. Proceedings of International Society for Optical Engineering(SPIE) [ C]. Orlando, FL, USA,2003,5102:1 - 4.
  • 6P G Georgiev,F Theis,A Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures [ J]. IEEE Transactions on Neural Network, 2005, 16 ( 4 ) : 992 - 996.
  • 7M Zibulevsky, B A Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary [J ]. Neural Computation,2001,13(4) : 863 - 882.
  • 8J L Starck, M Elad, D Donoho. Redundant multiscale transforms and their application for morphological component analysis[J]. Advances in Imaging and Electron Physics, 2004, 132 (82) : 287 - 348.
  • 9J L Starck, M Elad, D Donoho. Image decomposition via the combination of sparse representation and a variational approach [J]. IEEE Transactions on Image Processing, 2005, 14( 10): 1570- 1582.
  • 10E J Candes. Ridgelts: theory and applications[ D ]. USA: Department of Statistics, Stanford University, 1998.

共引文献100

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部