期刊文献+

如何利用广义量词的语义性质判断扩展三段论的有效性 被引量:9

How to Judge the Validity of Extended Syllogisms by Semantic Properties of Generalized Quantifiers
下载PDF
导出
摘要 在国内外最新研究成果的基础上,笔者通过对文中的定理和推论的证明,主要说明了以下几点:(1)利用广义量词的相关语义性质,比如单调性和对称性,既可以解释亚氏三段论的有效性,又可以解释带有广义量词的扩展三段论的有效性;(2)一些有效的扩展三段论仅仅表征了广义量词的左或右单调性,还有一些有效的扩展三段论同时表征了广义量词的多个语义性质;(3)利用广义量词的东南或西北或西南或东北方向的单调性可以判断一些带有限制条件的扩展三段论的有效性。此研究将有利于广义量词理论的发展,对于计算机科学中的知识表示和知识推理的研究都具有较为重要的理论价值和实践意义。 On the basis of the latest related researches,we prove some new theorems and corollaries,which indicate:(1) The validity of Aristotelian syllogisms and validities of extended with generalized quantifiers can be explained by their corresponding semantic properties(such as monotonicity and symmetry);(2) Some valid extended syllogisms manifest right/left monotonicity,while some others simultaneously manifest many semantic properties of generalized quantifiers;(3) The validity of some extended syllogisms with additional conditions can be judged by Southeast/Northwest/Southwest/Northeast monotonicity.This study will be helpful to the development of generalized quantifier theory,having important theoretical value and practical significance for knowledge representation and reasoning in computer science.
出处 《逻辑学研究》 CSSCI 2013年第2期42-56,共15页 Studies in Logic
基金 教育部人文社科研究规划项目“面向自然语言信息处理的广义量词理论研究”(编号为:12YJA72040001)
  • 相关文献

参考文献17

  • 1J. Barwise and R. Cooper, 1981,“Generalized quantifiers and natural language”,Lin-guistics and Philosophy, 4(2): 159-219.
  • 2J. Barwise and J. Etchemendy, 2003, Language, Proof and Logic,Stanford, CA: CSLIPublications.
  • 3J. van Eijck, 2005,“Syllogistics = monotonicity + symmetry + existential import”,http://www.oai.cwi.nl/oai/asset/10940/10940D.pdf.
  • 4C. K. Fat, 2012,Inferential Patterns of Generalized Quantifiers and their Applicationsto Scalar Reasoning, Ph. D. dissertation, Hong Kong Polytechnic University.
  • 5E. L. Keenan and D. Westerstahl, 1997,“Generalized quantifiers in linguistics andlogic”,in J. Benthem and A. Meulen (eds.),Handbook of Logic and Language, 14,837—893,Amsterda: Elsevier.
  • 6W. A. Murphree, 1991,Numerically Exceptive Logic: A Reduction of the ClassicalSyllogism, New York: P. Lang.
  • 7S. Peters and D. Westerstahl, 2006, Quantifiers in Language and Logic,Oxford: Clare-don Press.
  • 8P. L. Peterson, 2000, Intermediate Quantifiers: Logic, Linguistics, and AristotelianSemantics, Aldershot: Ashgate.
  • 9F. Sommers and G, Englebretsen, 2000, An Invitation to Formal Reasoning: The logicof Terms, Aldershot: Ashgate.
  • 10D. Westerstahal, 2007, “Quantifiers in formal and natural languages”,in D. M. Gabbayand F. Guenthner (eds.), Handbook of Philosophical Logic, 14, 223-238.

二级参考文献21

  • 1J. Kontinen, Zero-One Law and Rational Quantigiers, staff, science, uva. nl/- katrenko/stus06/images/kontinen. pdf, pp. 1-12.
  • 2L.T.F. Gamut, Intensional Logic and Logical Grammar, University of Chicago Press, 1991, pp. 222-245.
  • 3S. Peters & D. Westerstahl, Quantifiers in language and logic, Claredon Press Oxford, 2006, p. 96 ; p. 160; pp. 163-185; p. 176; p. 176; p. 177.
  • 4M. Kanazawa, Dynamic Generalized Quantifiers and Monotonicity, Stanford University, http://www, inc. uva. nl/Publications/dgq, pdf, 1993, pp. 1-37.
  • 5K. Jaszczlot, Quantified Expressions, University of Cambridge, http://www, mml. cam. ac. uk/ling/courses/ ugrad/p_5, html, 2007/2008, pp. i-vi.
  • 6P. Saint-Dizier, Default Logic, Natural Language and Generalized Quantifiers, 1RISA-INRIA, http ://www. aclweb, org/antholgy-new/c/c88/c88-2117, pdf, 1988, pp. 555-561.
  • 7E. Ruys & Y. Winter, "Background on Generalized Quantifier Theory", 3 Oct. 2008 http ://www. cs. tech- nion. ac. il/ - winter/course/synsem, html, 1997, pp. 1-11.
  • 8R. Zuber. Symmetric and contrapositional quantifiers[J] 2007,Journal of Logic, Language and Information(1):1~13
  • 9J.Barwise,R.Cooper. Generalized quantifiers and natural language[J].Linguistics and Philosophy,1981,(02):159-219.
  • 10J.Barwise,R.Cooper. Generalized quantifiers and natural language[M].Semantics:A Reader,Oxford University Press,2004.482-487.

共引文献21

同被引文献41

  • 1林胜强,张晓君.广义量词的推理模式研究[J].湖南科技大学学报(社会科学版),2014,17(6):29-33. 被引量:9
  • 2余维发.亚里士多德三段论与其他传统三段论之区别[J].哈尔滨学院学报,2006,27(9):23-26. 被引量:2
  • 3张晓君,郝一江.广义量词的单调性与数字三角形[J].重庆理工大学学报:社会科学,2010(3):18-24.
  • 4MOSTOWSKI A.On a Generalization of Quantifiers[J].Fund Math,1957,44:12-36.
  • 5BARWISE J,COOPER R.Generalized Quantifiers and Natural Language[J].Linguistics and Philosophy,1981,(2):159-219.
  • 6KEENAN E L.The Semantics of Determiners[C]//The Handbook of Contemporary Semantic Theory.Blackwell Publishing,1997.
  • 7VAN EIJCK J.Syllogistics=Monotonicity+Symmetry+Existential Import[EB/OL].[2012-06-18].http://www.oai.cwi.nl/oai/asset/10940/10940D.pdf.2005.
  • 8PETERS S,WESTERSTHI D.Quantifiers in Language and Logic[M].Oxford:Claredon Press,2006.
  • 9SZYMANIK J.Quantifiers in Time and Space[M].Polen:Geboren te Warschau,2009.
  • 10Chow K F.Inferential Patterns of Generalized Quantifiers and their Applications to Scalar Reasoning[D].Hong Kong Polytechnic University,2012.

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部