期刊文献+

Manipulation of light in MIM plasmonic waveguide systems 被引量:2

Manipulation of light in MIM plasmonic waveguide systems
原文传递
导出
摘要 Plasmonic waveguides that allow deeply subwavelength confinement of light provide an effective platform for the design of ultracompact photonic devices.As an important plasmonic waveguide,metal-insulator-metal(MIM)structure supports the propagation of light in the nanoscale regime at the visible and near-infrared ranges.Here,we focus on our work in MIM plasmonic waveguide devices for manipulating light,and review some of the recent development of this topic.We introduce MIM plasmonic wavelength filtering and demultiplexing devices,and present the electromagnetic induced transparency(EIT)-like and Fano resonance effects in MIM waveguide systems.The slow-light and rainbow trapping effects are demonstrated theoretically.These results pave a way toward dynamic control of the special and useful optical responses,which actualize some new plasmonic waveguide-integrated devices such as nanoscale filters,demultiplexers,sensors,slow light waveguides,and buffers. Plasmonic waveguides that allow deeply subwavelength confinement of light provide an effective platform for the design of ultra- compact photonic devices. As an important plasmonic waveguide, metal-insulator-metal (MIM) structure supports the propaga- tion of light in the nanoscale regime at the visible and near-infrared ranges. Here, we focus on our work in MIM plasmonic waveguide devices for manipulating light, and review some of the recent development of this topic. We introduce MIM plasmonic wavelength filtering and demultiplexing devices, and present the electromagnetic induced transparency (EIT)-like and Fano resonance effects in MIM waveguide systems. The slow-light and rainbow trapping effects are demonstrated theoretically. These resuits pave a way toward dynamic control of the special and useful optical responses, which actualize some new plasmonic wave- guide-integrated devices such as nanoscale filters, demultiplexers, sensors, slow light waveguides, and buffers.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2013年第30期3607-3616,共10页
基金 supported by the National Natural Science Foundation of China(10874239,10604066 and 11204368)
关键词 表面等离子体激元 波导系统 MIM 轻便 操纵 等离子体波导 电磁诱导透明 光子器件 surface plasmons, coupled resonators, optical filters, wavelength demultiplexers, slow light, rainbow trapping
  • 相关文献

参考文献106

  • 1Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwave- length optics. Nature, 2003, 424:824-830.
  • 2Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440:508-511.
  • 3Gramotnev D, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photon, 2010, 4:83-91.
  • 4Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and focusingof electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett, 2008, 100:023901.
  • 5Fang Y, Li Z, Huang Y, et al. Branched silver nanowires as controllable plasmon routers. Nano Lett, 2010, 10:195(1954.
  • 6Wang B, Wang G P. Surface plasmon polariton propagation in na- noscale metal gap waveguides. Opt Lett, 2004, 29:1992-1994.
  • 7Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal sub- wavelength plasmonic waveguides. Appl Phys Lett, 2005, 87:131102.
  • 8Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express, 2005, 13:10795-10800.
  • 9Lu H, Liu X M, Wang L, et al. Ultrafast all-optical switching in na- noplasmonic waveguide with Kerr nonlinear resonator. Opt Express, 2011, 19:2910-2915.
  • 10Fu Y, Hu X, Lu C, et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett, 2012, 12:5784-5790.

同被引文献29

  • 1Falk A L, Koppens F H L, Yu C L, et al.. Near-field electrical detection of optical plasmons and single-plasmon sources[J]. Nature Physics, 2009, 5(7): 475-479.
  • 2Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
  • 3Bozhevolnyi S I, Volkov V S, Devaux E, et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.
  • 4Dionne J A, Sweatlock L A, Atwater H A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization [J]. Phys Rev B, 2006, 73(3): 035407.
  • 5Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Appl Phys Lett, 2005, 87(13): 131102.
  • 6Gao Hongtao, Shi Haofei, Wang Changtao, et al.. Surface plasmon polariton propagation and combination in Y-shaped metallic channels [J]. Opt Express, 2005, 13(26): 10795-10800.
  • 7Han Z H, Liu L, Forsberg E. Ultra-compact directional couplers and Mach Zehnder interferometers employing surface plasmon polaritons [J]. Opt Commun, 2006, 259(2): 690-695.
  • 8Han Zhonghua, He Sailing. Muhimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter [J]. Opt Commun, 2007, 278(1): 199-203.
  • 9Hosseini A, Massoud Y. Nanoscale surface plasmon based resonator using rectangular geometry[J]. Appl Phys Lett, 2007, 90(18): 181102.
  • 10Wang Guoxi, Lu Hua, Liu Xueming, et al.. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011, 19(4): 3513-3518.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部