期刊文献+

基于核不相关邻域保持投影的毫米波雷达目标识别 被引量:1

Millimeter Wave Radar Target Recognition Based on Kernel Uncorrelated Neighborhood Preserving Projects
下载PDF
导出
摘要 流形学习的提出和发展为毫米波雷达目标识别提供了新的思路。针对传统特征提取算法的不足,提出了一种基于核的非线性流形学习算法,即核不相关邻域保持投影(KUNPP)。该算法在邻域保持投影的基础上引入再生核,将数据映射到Hilbert空间;在Hilbert空间内执行邻域保持投影算法,并引入不相关约束,使得到的特征向量具有不相关性,减少冗余信息。将KUNPP应用于毫米波雷达目标识别,仿真数据集和实测数据集的实验结果均表明算法能取得较好的结果。 The proposal and development of manifold learning offer new thinking of millimeter wave radar target recognition. A nonlinear manifold learning algorithm using kernel technology, kernel uneorrelated neighborhood preserving projects (KUNPP), is presented according to the deficiency of traditional feature extraction method. The algorithm maps the data into a Hilbert space by introducing reproducing kernel based on neighborhood preserving projects (NPP). Then NPP is performed in the Hilbert space. And an uncorrelated constraint is introduced, which makes the feature vectors uncorrelated and reduces the redundancy of information. Millimeter wave radar target recognition experiments were performed using KUNPP, and the results from simulated data and measured data show that KUNPP can obtain better performance.
出处 《电光与控制》 北大核心 2013年第10期38-41,共4页 Electronics Optics & Control
基金 江苏省高校自然科学项目(11KJB510020) 国家自然科学基金(61171077)
关键词 毫米波雷达 目标识别 流形学习 邻域保持投影 millimeter wave radar target recognition manifold learning neighborhood preserving project
  • 相关文献

参考文献16

  • 1[M].TENENBAUM J B, SILVA V, LANGFORD J C. A globalgeometric framework for nonlinear dimensionality reduc-tion[J]. Science, 2000, 290(5500) :2319-2323.
  • 2ROWEIS S T, SAUL L K. Nonlinear dimensionality reduc-tion by locally linear embedding [ J]. Science, 2000, 290(5500) :2323-2326.
  • 3BELKIN M, NIYOGI P. Laplacian eigenmaps for dimen-sionality reduction and data representation [ J]. NeuralComputation, 2003, 15(6) : 1373-1396.
  • 4ZHANG Zhenyue, ZHA Hongyuan. Principal manifold andnonlinear dimension reduction via local tangent spacealignment [ J]. SIAM Journal of Scientific Computing,2004, 26(1) ;313-338.
  • 5HE X F, YAN S C,HU Y X,et al. Face recognition usingLaplacian faces[ J]. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 2005, 27(3) :328-340.
  • 6HE X F,CAI D, YAN S C, et al. Neighborhood preservingembedding [ C] //Proceedings of 10th IEEE ConferenceComputer Vision, Beijing, China, 2005, 2 : 1208-1213.
  • 7PANG Y W, ZHENG L, UU Z K, et al. Neighborhood preser-ving projections (NPP) : A novel linear dimension reductionmethod [ C J//ICIC 2005, Part I, Lecture Notes in ComputerScience, Springer, Berlin, 2005,3644:117 -125.
  • 8CHENG J, LIU Q S, LU H Q, et al. Supervised kernellocality preserving projections for face recognition [ J].Neurocomputing, 2006,67 :443-449.
  • 9YU X L, WANG X G, LIU B Y. Supervised kerne] neigh-borhood preserving projections for radar target recognition[J]. Signal processing,2008,88(9) :2335-2339.
  • 10DENG Cai,HE Xiaofei, HAN Lianwei, et al. OrthogonalLaplacian faces for face recognition [ J]. IEEE Tran-sactions on Image Processing, 2006,15 ( 11 ) : 3608-3614.

二级参考文献15

  • 1Tenenbaum J B, Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.
  • 2Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 3Belkin M and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
  • 4He X F, Yan S C, Hu Y X, Niyogi P, and Zhang H J. Face recognition using Laplacian faces. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 5He X F, Cai D, Yan S C, and Zhang H J. Neighborhood preserving embedding. Proc. 10th IEEE. Conf. Computer Vision, Beijing, China, 2005, 2: 1208-1213.
  • 6Pang Y W, Zheng L, and Liu preserving projections (NPP): Z K, et al.. Neighborhood a novel linear dimension reduction method. ICIC 2005, Part I, Lecture Notes in Computer Science, Springer, Berlin, 2005, Vol. 3644: 117-125.
  • 7Shao J D, Rong G, and Lee J M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis. Chemometrics and Intelligent Laboratory Systems, 2009, 96(1): 75-83.
  • 8Kokiopotflou E and Saad Y. Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2143-2156.
  • 9Cheng J, Liu Q S, Lu H Q, and Chen Y W. Supervised kernel locality preserving projections for face recognition. Neurocomputing, 2006, 67(1-4): 443-449.
  • 10Yu X L, Wang X G, and Liu B Y. Supervised kernel neighborhood preserving projections for radar target recognition. Signal Processing, 2008, 88(9): 2335-2339.

共引文献4

同被引文献3

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部