期刊文献+

矩阵环上快速公钥密码算法的安全分析

Security analysis of fast public key cryptosystem on matrix ring
原文传递
导出
摘要 分析适用于资源受限的计算环境的快速公钥密码算法的安全性非常重要。通过使用格归约算法,证明破解基于矩阵环的快速公钥密码算法的难度并不比整数分解问题更难,即给定整数分解神谕,存在多项式时间求解其等价私钥,并通过计算实验演示安全分析的正确性。 It is very important to analyze the security of fast public key cryptosystem suitable for computing devices with limited resources. By applying lattice reduction algorithm, it is not more difficult than the integer factorization problem to break the fast public key cryptosystem based on matrix ring. That is, given an oracle of factoring integers, there ex- ists a polynomial time algorithm which solves the secret key from the public key. The correctness of security analysis is demonstrated by computational experiments.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第9期22-28,34,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61142007) 江苏理工学院科研基金资助项目(KYY12027)
关键词 公钥密码体制 整数分解 密码分析 格归约 public key crypt osystem integer factorization cryptanalysis lattice reduction
  • 相关文献

参考文献9

  • 1RIVEST R L, SHAMIR A, ADLEMAN L M. A method for obtaining digital signature and public key cryptosystems [ J ]. Communications of the ACM, 1978, 21 (2) :120-126.
  • 2ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[ J]. IEEE Transactions on In- formation Theory, 1985, 31 (4) :469-472.
  • 3KOBLITZ N. Elliptic curve cryptosystems [J ]- Mathematics of Computation American Mathematical Society, 1987, 48 ( 117 ) :203-209.
  • 4巨春飞,仇晓涛,王保仓.基于矩阵环的快速公钥密码算法[J].山东大学学报(理学版),2012,47(9):56-59. 被引量:1
  • 5NGUYEN P Q, VALLIE B. The LLL algorithm: survey and applications( information security and cryptography) [ M]. New York: Springer Press, 2009: 33-35.
  • 6LENSTRA H W, LENSTRA A K, LOVASZ L. Factoring polynomials with rational coefficients [ J ]. Mathematische Annalen, 1982, 261:515-534.
  • 7KANNAN R. Minkowski's convex body theorem and integer programming[ J l. Mathematics of Operations Research, 1987, 12(3) :415-440.
  • 8AJTAI M, KUMAR R, SIVAKUMAR D. A sieve algorithm for the shortest lattice vector problem [ C ]// Proceedings of the thirty-third annual ACM symposium on Theory of computing( STOC' 01 ). New York: ACM Press, 2001: 601-610.
  • 9SHOUP V. NTL: a library for doing number theory[EB/OL]. [2013-01-12]. http://shoup, net/ntl/.

二级参考文献10

  • 1DIFFIE W, HELLMAN M E. New directions in cryptography [ J ]. IEEE Transaction on Information Theory, 1976, 22(6) : 644-654.
  • 2RIVEST R L, SHAMIR A, ADLEMAN L M. A method for obtaining digital signature and public key cryptosystems [J]. Communications of the ACM, 1978, 21 (2) : 120-126.
  • 3ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms [J].IEEE Transactions on In- formation Theory, 1985, 31 (4) :469-472.
  • 4KOBLITZ N. Elliptic curve cryptosystems [ J ]. Mathematics of Computation American Mathematical Society, 1987, 48 ( 117 ) :203-209.
  • 5HOFFSTEIN J, PIPHER J, SILVERMAN J H. NTRU : a new high speed public key cryptosystem [ C ]//BUHLER J. Pro- ceedings of Algorithm Number Theory-ANTS 1998, LNCS 1423. Berlin: Springer-Verlag, 1998:267-288.
  • 6YOO H, HONG S, LEE S, et al. A proposal of a new public key cryptosystem using matrices over a ring[ C ]//DAWSON E, CLARK A, BOYd C. Proceedings of the 5th Australasian Conference on Information Security and Privacy-ACISP 2000, LNCS 1841. Berlin : Springer-Verlag, 2000:41-48.
  • 7YOUSSEF A M, GONG G. Cryptanalysis of a public key cryptosystem proposed at ACISP 2000[ C ]//VARADHARAJAN V, MU Yi. Proceedings of the 6th Australasian Conference on Information Security and Privacy-ACISP 2001, LNCS 2119. Berlin : Springer-Verlag, 2001 : 15-20.
  • 8WANG Baocang, HU Yupu. Diophantine approximation attack on a fast public key cryptosystem[ C ]//CHEN Kefei, DENG R H, LAI Xuejia Lai, et al. Proceedings of the 2nd International Conference of Information Security Practice and Experience ISPEC 2006, LNCS 3903. Berlin : Springer-Verlag, 2006 : 25-32.
  • 9KOBLITZ N. Algebraic aspects of cryptography [ M]. Berlin: Springer-Verlag, 1998:44-45.
  • 10LENSTRA A K, LENSTRA H W Jr, LOVASZ L. Factoring polynomials with rational coefficients [ J ]. Mathematische An- nalen, 1982, 261(4): 513-534.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部