期刊文献+

度量空间的概率近似算法

Probabilistic approximation algorithm of metric spaces
原文传递
导出
摘要 通过改进FRT算法,得到随机最小序分割算法(random minimum order partition,RMOP)。在度量空间G中,对点列V进行随机排序(设序列为π),随机选取点u∈V后,获得下标J r(u)=inf{j∈N:d(πj,u)≤r,πj,u∈V},再以点πJr(u)为球心r为半径,对度量空间G进行递归分割,进而形成一棵分层良分割树(hierarchically well separated tree,HST);同时得到E(d T(u,v))≤O(log n)d(u,v)。在RMOP算法与FRT算法具有相同的π时,RMOP算法能保证点u落入特定分割子集B(πJr(u),r)的概率最大。 A new algorithm RMOP was obtained which is called random minimum order partition by improving FRT algorithm. In view of choosing a random permutation 7r for all points of the given metric space G, randomly selecting point u ∈ V, then the order Jr(u)=inf{j∈N:d(πj,u)≤r,πj,u∈V} was derived. Therefore, a hierarchically well separated tree (short for HST) was constructed by recursively partitioning G via some clusters B(πJr(u),r), which πJr(u)is the center and r is the radius of the cluster. Moreover, the expectation expression E(dT(u,v))≤0(logn)d(u,v) holds. When FRT algorithm and RMOP algorithm have the same random permutation π, the probabil- ity which ensures the point u lies in the region B(πJr(u),r) is maximum in the RMOP algorithm.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第9期51-55,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11201075) 福建省自然科学基金资助项目(2010J01005)
关键词 HSTs 树度量 随机分割 概率近似算法 HSTs tree metrics random partition probabilistic approximation algorithm
  • 相关文献

参考文献17

  • 1JOHNSON W B, LINDENSTRAUSS J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathemat- ics, 1984, 26 : 189-206.
  • 2GRAHAM R L, WINKLER P M. On isometric embeddings of graphs[ J]. Transactions of the American Mathematical Socie- ty, 1985, 288(2) :527-536.
  • 3LINIAL N, LONDON E, RABINOVICH Y. The geometry of graphs and some of its algorithmic applications[ J]. Combina- torica, 1995, 15(2):215-245.
  • 4CAI L, CORNEIL D G. Tree spanners[ J]. SIAM Journal on Discrete Mathematics, 1995, 8(3) :359-387.
  • 5BARTAL Y. Probabilistic approximation of metric spaces and its algorithmic applications[ C ]//Proceeding of the 37th Annual Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 1996: 184-193.
  • 6BARTAL Y. On approximating arbitrary metrics by tree metrics[ C ]// Proceeding of the 30th Annual ACM Symposium on Theory of Computing. New York: ACM Press, 1998: 161-168.
  • 7FAKCHAROENPHOL J, RAO S, TALWAR K. A tight bound on approximating arbitrary metrics by tree metrics[ J]. Journal of Computer and System Sciences, 2004, 69(3) :485-497.
  • 8CALINESCU G, KARLOFF H, RABANI Y. Approximation algorithms for the 0-extension problem [ J]. SIAM Joumal on Computing, 2004, 34 ( 2 ) : 358-372.
  • 9FAKCHAROENPHOL J, HARRELSON C, RAO S, et al. An improved approximation algorithm for the 0-extension problem [C]//Proceeding of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM Press, 2003: 257- 265.
  • 10杨朝霞.超图嵌入带权重圈的一个2-近似算法[J].山东大学学报(理学版),2008,43(8):11-13. 被引量:1

二级参考文献11

  • 1GANLEY J L, COHOON J P. Minimum-congestion hypergraph embedding in a cycle[J]. IEEE Trans Comput, 1997, 46(5) :600-602.
  • 2GONZALEZ T. Improved approximation algorithm for embedding hyperedges in a cycle[J]. Information Processing Letters, 1998, 67: 267-271.
  • 3LEE S L, HO H J. Mgofithms and complexity for weighted hypergraph embedding in a cycle[ EB/OL]. [2006-05-10]. http://ieeexplore. ieee. org/ie15/8409/26515/01180862. pdf.
  • 4GU Q P, WANG Y. Efficient algorithm for embedding hypergraph in a cycle[ M ]//lecture Notes in Computer Science. Berlin: Springer, 2004:85-94.
  • 5DENG Xiaotie, LI Guojun. A PTAS for embedding hypergraph in a cycle[J]. ICALP, 2004:433-444.
  • 6MOTWANI R, RAGHAVAN P. Randomized algorithms[M]. Cambridge : Cambridge Univ Press, 1995.
  • 7GANLEY J L, COHOON J P. Minimum-congestion hypergraph embedding in a cycle[J]. IEEE Trans Computer, 1997, 46(5) :600-602.
  • 8GONZALEZ T. Improved approximation algorithm for embedding hyperedges in a cycle[J]. Inform Process Lett, 1998, 67:267-271.
  • 9GU Q P, WANG Y. Efficient algorithm for embedding hypergraph in a cycle[ M]// Lecture Notes in Computer Science. Berlin: Springer, 2003 : 85-94.
  • 10DENG X, LI G. A PTAS for embedding hypergraph in a cycle[J]. ICALP, 2004:433-444.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部