摘要
基于已有的共轭梯度法思想,分别对两种混合共轭梯度法的搜索方向进行修正,使得新的修正型混合共轭梯度法在每步迭代都不依赖于任何线搜索而自行产生充分下降方向。在适当的条件下,证明了新算法在Wolfe线搜索下的全局收敛性。数值实验表明该方法是有效的。
With the existing conjugate gradient method, the search directions of two hybrid conjugate gradient methods were modified, such that the new hybrid conjugate gradient methods can automatically generate sufficient descent direc- tion independent of the line search used for each iteration. Under appropriate conditions and the Wolfe line search, it was proved that the new methods are globally convergent. Preliminary numerical results show that the methods are effi- cient.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2013年第9期78-84,89,共8页
Journal of Shandong University(Natural Science)
基金
重庆市高等教育教学改革研究重点项目(102104)
关键词
无约束优化
共轭梯度法
充分下降性
全局收敛性
unconstrained optimization
conjugate gradient methods
sufficient descent property
global convergence