期刊文献+

具有充分下降性的修正型混合共轭梯度法 被引量:1

The modified hybrid conjugates gradient methods with sufficient descent property
原文传递
导出
摘要 基于已有的共轭梯度法思想,分别对两种混合共轭梯度法的搜索方向进行修正,使得新的修正型混合共轭梯度法在每步迭代都不依赖于任何线搜索而自行产生充分下降方向。在适当的条件下,证明了新算法在Wolfe线搜索下的全局收敛性。数值实验表明该方法是有效的。 With the existing conjugate gradient method, the search directions of two hybrid conjugate gradient methods were modified, such that the new hybrid conjugate gradient methods can automatically generate sufficient descent direc- tion independent of the line search used for each iteration. Under appropriate conditions and the Wolfe line search, it was proved that the new methods are globally convergent. Preliminary numerical results show that the methods are effi- cient.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第9期78-84,89,共8页 Journal of Shandong University(Natural Science)
基金 重庆市高等教育教学改革研究重点项目(102104)
关键词 无约束优化 共轭梯度法 充分下降性 全局收敛性 unconstrained optimization conjugate gradient methods sufficient descent property global convergence
  • 相关文献

参考文献21

  • 1HESTENES M R, STIEFEL E L. Methods of conjugate gradient for solving linear systems[ J]. Journal of Research of the Na- tional Bureau of Standards, 1952, 49:409-436.
  • 2POLAK E, RIBIERE G. Note sur la convergence des m6thodes de directions conjugu6esl [J. Revue Francaisdlnformatique et de Recherche Operationnelle, 1969, 16 ( 3 ) : 35-43.
  • 3POLYAK B T. The conjugate gradient methods in extreme problems [J]- USSR Computational Mathematics and Mathematical Physics, 1969, 9:94-112.
  • 4LIU Y L, STOREY C S. Efficient generalized conjugate algorithms, part 1 : theory[ J]. Journal of Optimization Theory and Applications, 1991, 69( 1 ) : 129-137.
  • 5FLETCHER R, REEVES C M. Function minimization by conjugate gradients [ J]. Computer Journal, 1964, 7:149-154.
  • 6FLETCHER R. Practical methods of optimization, vol I : unconstrained optimization[ M]. New York: Wiley and Sons, 1987.
  • 7DAI Yuhong, YUAN Yaxiang. A nonlinear conjugate gradient method with a strong global convergence property [ J ]. SIAM Journal on Optimization, 1999, 10 : 177-182.
  • 8HAGER W W, ZHANG Hongchao. A survey of nonlinear conjugate gradient methods [ J ]. Pacific Journal on Optimization, 2006, 2:35-58.
  • 9TOUATI-AHMED D, STOREY C S. Efficient hybrid conjugate gradient techniques [ J ] Journal of Optimization Theory and Applications, 1990, 64:379-397.
  • 10GILBERT J C, NOCEDAL J. Global convergence properties of conjugate gradient methods for optimization [ J ]. SIAM Jour- nal on Optimization, 1992, 2( 1 ) :21-42.

同被引文献14

  • 1戴或虹 袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2000..
  • 2D. Touati-Ahmed, C. S. Storey. Efficient hybrid congjugate gradient techniques[ J]. J. Opti. Theo. Appl. 1990,64:379 -397.
  • 3J. C. Gilbert, J. Nocedal. Global convergence peoperties of conjugate gradient methods for optimization [ J ]. SIAM. J. Opti. 1992,2 ( 1 ) :21 - 42.
  • 4Y. H. Dai, Y. X. Yuan. An efficient hybrid congjugate gradient method for unconstrained optimizaton [ J]. Anna. Oper. Rese. 2001,103:53 -47.
  • 5Z.F.Dai,L.P.Chen.AmixedHS-DYconjugategradientmethods[J].计算数学,2005,27(4):429-436.
  • 6W. Jia, J. Z. Zong, X. D. Wang. AN Improved Mixed Conjugate Gradient Method [ J ]. Syst. Engi. Proe. 2012,4 : 219 - 225.
  • 7X. F. Yang, Z. J. Luo,X. Y. Dai. A Global Convergence of LS-CD Hybrid Conjugate Gradient Method[ J]. Adva. Nume. Anal. ,2013,9:1 - 5.
  • 8Y. Y. Huang,S. Y. Liu,X. W. Du, et al. A Globally Convergent Hybrid Conjugate Gradient Method and Its Numerical Behaviors [ J ]. J. Appl. Math. ,2013,3:1 - 14.
  • 9J. J. More, B. S. Garbow, K. E. Hillstrome. Testing unconstrained optimization software [ J ]. ACM Trans Math. sofe. 1981,7 : 17 - 41.
  • 10N. Andrei, An unconstrained Optimization test functions Collection[ J ]. Adva. Mode. Opti. , 2008,10 ( 1 ) : 147 - 161.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部