期刊文献+

多巴胺在电沉积石墨烯修饰碳分子线电极上的电化学测定 被引量:3

Electrochemical Detection of Dopamine on Electrodeposited Graphene Modified Carbon Molecular Wire Electrode
下载PDF
导出
摘要 以分子线二苯乙炔为修饰剂和粘合剂制备了一种新型的碳糊电极-碳分子线电极(CMWE),并以其为基底电极采用电化学还原法将石墨烯(GR)沉积到CMWE表面得到电沉积石墨烯修饰碳分子线电极(GR/CMWE)。考察了多巴胺(DA)在该修饰电极上的电化学行为。实验结果显示DA在GR/CMWE上出现了1对峰形良好的氧化还原峰,与裸电极相比,该氧化还原峰的电流增大,峰电位差减小,表明修饰电极对DA的电化学反应有催化作用。在最佳实验条件下峰电流与DA浓度在8.0×10-7-2.0×10-3 mol/L范围内呈良好的线性关系,检出限(3σ)为2.55×10-7 mol/L。将该电极用于多巴胺注射液样品的检测,结果满意。 By using a kind of molecular wire diphenylacetylene as the modifier and the binder,a new carbon paste electrode,which was denoted as carbon molecular wire electrode(CMWE),was prepared and used as the substrate electrode.Then graphene(GR) was electrodeposited on the surface of CMWE to get the modified electrode named as GR/CMWE.The electrochemical behaviors of dopamine(DA) on GR/CMWE were investigated by cyclic voltammetric method.A pair of the well-defined redox peaks were observed.Compared with that of CMWE,the redox peak currents increased greatly with the decrease of the peak-to-peak difference,indicating that the electrode reaction of DA on GR/CMWE was reversible.Under the optimal conditions,the peak currents had a good linear relationship with DA concentration in the range of 8.0×10-7 - 2.0×10-3 mol/L with a detection limit(3σ) of 2.55×10-7 mol/L.The commonly coexisting substances did not interfere DA detection, and the proposed method was applied in the determination of DA in injection samples with satisfactory results.
出处 《分析测试学报》 CAS CSCD 北大核心 2013年第9期1122-1126,共5页 Journal of Instrumental Analysis
基金 国家自然科学基金资助项目(21075071)
关键词 石墨烯 碳分子线电极 多巴胺 电化学 示差脉冲伏安法 graphene carbon molecular wire electrode dopamine electrochemistry differential pulse vohammetry
  • 相关文献

参考文献18

二级参考文献38

共引文献61

同被引文献45

  • 1张剑荣,杨曦,张祖训.超微电极研究──电迁移对准稳态线性扫描伏安法的影响[J].高等学校化学学报,1994,15(10):1454-1458. 被引量:6
  • 2李利军,钟招亨,冯军,陈其锋,程昊,黄文艺,孔红星,吴健玲.流动注射化学发光法测定盐酸多巴胺[J].分析测试学报,2007,26(1):125-127. 被引量:30
  • 3SunCL, Lee H H, Yang J M, et al. Biosens. Bioelectron,2011, 26(8) :3450.
  • 4Liu W, Li C,Tang L, et al. Electrochim Acta, 2013, 88 : 15.
  • 5Hou S H, Zheng N, Feng H, et al. Anal Biochem, 2008, 381(2) : 179.
  • 6Chen W,Tang J, Cheng H J, et al. Talanta, 2009, 80(2) :539.
  • 7Tsai T H,Chen T W, Chen S M. Electroanal, 2010,14(22):1655.
  • 8Kovtyukhova N I, Ollivier P J, Martin B R, et al. Chem Mater, 1999, 11 : 771.
  • 9Hummers W S,Offeman R E, J Am Chem Soc, 1958, 80:1339.
  • 10Stoller M D, Park S, Zhu Y W, et al. Nano Lett, 2008, 8(10) :3498.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部