期刊文献+

基于数据块特征的地面目标识别方法研究

Image Recognition Way Based on Data Block Character
下载PDF
导出
摘要 光线变化常常改变图像数据块结构,导致图像匹配识别错误。文中分析了光线强弱对地面目标灰度变化影响,提出基于目标数据块特征的识别方法,将数据块目标分为反色或不反色两类,分别用Nprod匹配和特征识别方法识别两类目标,避免了光线变化对图像识别影响。实验表明,该方法能够克服光线变化影响,较好地识别地面不同类型目标。 Light ray changes can always alter the image data block structure ,which leads to matching and recognition errors in the image. This paper analyzes how the intensity of light impacts on the gray of ground targets, and proposes a kind of method to recognize the target based on data block as well as dividing the target into inverse color or direct color part. We used the Nprod matching and character distin- guishing method to extract the target to avoid the image gray disturbing by the ray. It is proved that the method we put up with can overcome the impact of changes in light and recognize different kinds of targets aground well.
作者 王佳坤 王蜂
出处 《弹箭与制导学报》 CSCD 北大核心 2013年第4期191-194,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 地面目标 图像识别 数据块 匹配 ground targets image recognition data block matching
  • 相关文献

参考文献4

二级参考文献18

  • 1Zabidi M M A, Mustapa J, et al. Embedded vision systems for ship recognition//IEEE TENCON. Washington DC, USA: IEEE Computer Society, 2009: 1-5.
  • 2Alves J, Herman J, Rowe N C. Robust Recognition of Shiptypes from an Infrared Silhouette. Monterey, CA, USA: Naval Postgraduate School, 2004.
  • 3Luo Q, Khoshgoftaar T M, et al. Classification of ships in surveillance video//IEEE International Conference Information Reuse and Integration. Washington DC, USA: IEEE Computer Society, 2006: 432-437.
  • 4Li H, Wang X. Automatic recognition of ship types from infrared images using support vector machines//International Conference on Computer Science and Software Engineering. Washington DC, USA: IEEE Computer Society, 2008, 6:483-486.
  • 5Lan J, Wan L. Automatic ship target classification based on aerial images //Proceedings of SPIE. Bellingham Wash: SPIE, 2009,7156(12):1-10.
  • 6Antelo J, Ambrosio G, Gonzalez J, et al. Ship detection and recognition in high resolution satellite images//IEEE International Geoscience and Remote Sensing Symposium. Washington DC, USA: IEEE Computer Society, 2009, 4:514-517.
  • 7Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. London: Kluwer Academic Publisher, 1991.
  • 8Hwang W S, Weng J Y. Hierarchical discriminant regression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1277-1293.
  • 9Weng J Y, Hwang W. Incremental hierarchical discriminant regression[J]. IEEE Transactions on Neural Networks, 2007, 18(2):397-415.
  • 10Driggers R G, Cox P, Kelley M. National imagery interpretation rating system and the probabilities of detection, recognition and identification[J]. Optical Engineering, 1997, 36(7):1952-1959.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部