期刊文献+

利用颜色编码辅助计算绝对相位的傅里叶轮廓术 被引量:1

Absolute phase calculation for Fourier transform profilometry with colour coding grating
下载PDF
导出
摘要 针对传统去卷积算法时间需求的弊端,提出一种新的使用颜色编码辅助的绝对相位并行计算方法。该算法采用对光栅数目需求最少的傅里叶变换轮廓术(FTP)做为卷积相位求取的方法;颜色编码光栅被用来标识轮廓的序数。直接使用FTP计算出的卷积相位以及从彩色光栅中获得的轮廓序数,即可方便求出当前像素的绝对相位值;同时只用一副图像标识轮廓序数也比其他轮廓序数标识方法简单。本方法由于使用绝对相位计算方法,局部相位误差不会扩展。实验结果也证明了此算法对于多个分离物体以及复杂物体的有效性。 Aiming at the drawback of large time need for traditional phase unwrapping process, a novel method, absolute phase calculation for Fourier transform profilometry(FTP) with col- our coding grating is proposed. Fourier is adopted to calculate the relative phase (wrapped phase) because of the least need of images. Color strips are used to mark each 2n phase-change period. With the two parts, relative phase and fringe orders, the absolute phase can be ob- tained directly. The fringe orders and the relative phase are calculated simultaneously, and this algorithm can circumvent phase unwrapping process. Moreover, errors can not diffuse, be- cause no unwrapping process is needed in our algorithm, and also because the relative phase and fringe orders are uncorrelated. Besides, no need of unwrapping processing and calculating the absolute phase directly in our algorithm can lead to high speed in 3D profile measurement. Experimental results show the validity of our algorithm both for complex object and separate objects.
作者 鲁超 李永新
出处 《应用光学》 CAS CSCD 北大核心 2013年第5期831-836,共6页 Journal of Applied Optics
关键词 颜色编码 三维测量 绝对相位计算 相位去卷积 傅里叶变换轮廓术 colour coding 3D profile measurement absolute phase measurement phase un-wrapping Fourier transform profilometry
  • 相关文献

参考文献12

二级参考文献42

  • 1杨福俊,何小元,王蕴珊.一种新的单幅条纹图的相位解调方法[J].光子学报,2005,34(8):1257-1261. 被引量:4
  • 2田丰,赵宏,陈文艺,周剑,谭玉山.一种用于三维面形测量的新的去包裹方法[J].光子学报,1996,25(9):814-818. 被引量:3
  • 3LUIS S, ESTEBAN L,JAVIER S,et al. Profilometry by fringe projection[J].Opt Eng,2003,42(11):3307-3314.
  • 4LIANG Chia-chen, CHUNG Chih-huang, Miniaturized 3D surface profilometer using digital fringe projection [J]. Meas Sci Technol, 2005,16:1061 - 1068.
  • 5VOLKOV V V,ZHU Yi-mei. Deterministic phase unwrapping in the presence of noise[J]. Optics Letters, 2003, 28(22):2156-2158.
  • 6SCHOFIELD M A, ZHU Yi-mei. Fast phase unwrapping algorithm for interferometric applications[J]. Optics Letters, 2003,28(14) : 1194-1196.
  • 7KERR D, KAUFMANN G H, GALIZZI G E. Unwrapping of interferometric phase-fringe maps by the discrete cosine transform[J]. Applied Optics, 1996,35(5) : 810-816.
  • 8LIANG Zhi-pei. A model-based method for phase unwrapping [J]. IEEE Transactions on Medical Imaging, 1996,15 (6) : 893-897.
  • 9GHIGLIA D C, PRITT M D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software [M], New York :Wiley, 1998.
  • 10CHEN F, BROWN G M, SONG M. Overview of three-dimensional shape measurement using optical methods [J]. Optical Engineering, 2000,39 ( 1 ) : 10222.

共引文献60

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部