期刊文献+

多维线性约束鲁棒自适应特征波束形成算法

Robust Adaptive Eigen-beam Beamforming Algorithm Subject to Multiple Linear Equality Constraints
下载PDF
导出
摘要 以镶嵌在刚性圆柱体上的均匀圆阵为阵列模型,研究了一种鲁棒自适应特征波束形成算法。在分析了特征波束形成技术的基础上,将阵列优化问题描述为多维线性约束下的波束优化问题,进而在约束矩阵的正交线性子空间求解最优化问题,在满足鲁棒性约束条件下自适应地得到了阵列最优权向量,进而获得了与期望波束图较为一致的波束图,并分析了在满足鲁棒性约束条件下最大特征波束阶次的选择以及算法的收敛性。该算法具有收敛速度快、迭代误差不会累积的特点。计算机仿真验证了算法的有效性。 Multiple linear equality constraints are used in beamforming optimization and a robust adaptive eigen-beam beamforming algorithm is proposed based on the array model of a uniform circular array mounted on a rigid cylinder. The eigen-beam beamforming technology is analyzed firstly, and the array optimization is reformulated as the beamforming optimization subject to multiple linear equality constraints. Then, the optimization problem is resolved in the orthogonal subspace of the constraint matrix and the optimal beamformer weights are achieved subject to robustness constraint. The synthesized beampattern using the optimal weights is very similar to the desired beampattern. The selection of the maximal order of the eigen-beams and the convergence of the algorithm are analyzed. The proposed algorithm converges to the optimal performance quickly while the round-off errors do not accumulated. The validity of the proposed algorithm is verified by computer simulations.
机构地区 军械工程学院
出处 《火力与指挥控制》 CSCD 北大核心 2013年第9期15-19,共5页 Fire Control & Command Control
基金 国家自然科学基金资助项目(60672143)
关键词 鲁棒自适应算法 特征波束形成 多维线性约束 白噪声增益 robust adaptive algorithm, eigenbeam beamforming, multiple linear equality constraints, WNG
  • 相关文献

参考文献13

  • 1Teutsch H. Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition [ M ]. New York: Springer-Verlag. 2007.
  • 2Meyer J. Microphone Array for Hearing Aids Taking Into Account the Scattering of the Head[C ]//IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, 2001.
  • 3Meyer J, Elko G. A Highly Scalable Spherical Microphone Array Based on an Orthonormal Decomposition of the Soundfield [C]//In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP' 02), 2002.
  • 4Rafaely B. Plane-wave Decomposition of the Sound Field on a Spherc by Spherical Convolution [J]. J. Acoust. SOc. Am., 2004, 116(4): 2149-2157.
  • 5Rafaely B. Analysis and Design of Spherical Microphone Arrays[J] . IEEE Trans. Speech Audio Process., 2005, 13 ( 1 ): 135-143.
  • 6Teutsch H, Kellermann W. Acoustic Source Detection and Localization Based on Wavefield Decomposition Using Cicular Microphone Arrays [J] . J. Acoust. Soe. Am., 2006; 120(5 ): 2724-2736.
  • 7Meyer J. Beamforming for a Circular Microphone Array Mounted on Spherically Shaped Objects[J]. J. Aeoust. SOe. Am., 2001,109(1): 185-193.
  • 8张成,陈克安,杨志兴.刚性圆柱体上圆阵波束形成性能分析[J].声学学报,2010,35(1):68-75. 被引量:10
  • 9Rafaely B. Phase-mode Versus Delay-and-Sum Spherical Microphone Array Processing [J] . IEEE signal processing Letters, 2005,12 (10): 713-716.
  • 10Frost O L Ⅲ. An Algorithm for Linearly Constrained Adaptive Array Processing [C]//Proc. IEEE, 1972, 60 (8): 926-935.

二级参考文献14

  • 1Mathews C P, Zoltowski M D. Eigen-structure techniques for 2D angle estimation with uniform circular arrays. IEEE Trans. Signal Process., 1994; 42(9): 2395-2407.
  • 2Rafaely B. Phase-mode versus delay-and-sum spherical microphone array processing. IEEE signal processing Letters, 2005; 12(10): 713-716.
  • 3Cox H, Zeskind R M et al. Robust adaptive beamforming. IEEE Trans. Acoust., Speech, Signal Process., 1987; 35(10): 1365-1376.
  • 4Brandstein M, Ward D. Microphone arrays: signal processing techniques and applications. New York: Springer-Verlag, 2001:20-36.
  • 5Harry L V T. Optimum array processing: part Ⅳ of detection, estimation, and modulation theory. New York: Wiley-Interscience, 2002:59-71.
  • 6Belloni F, Koivunen V. Beamspace transform for UCA: error analysis and bias reduction. IEEE Trans. Signal Process., 2006; 54(8): 3078-3089.
  • 7Meyer J. Microphone array for hearing aids taking into account the scattering of the head. IEEE Workshop on the Applications of signal processing to Audio and Acoustics, New Platz, NY, USA, 2001:27-30.
  • 8Rafaely B. Plane-wave decomposition of the sound field on a sphere by spherical convolution. J. Acoust. Soc. Am., 2004; 116(4): 2149-2157.
  • 9Li Z Y, Duraiswami R. A robust and self-reconfigurable design of spherical microphone array for multi-resolution beamforming. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP'05), 2005; 4:1137-1140.
  • 10Li Z Y, Duraiswami R. Flexible and optimal design of spherical microphone arrays for beamforming. IEEE Trans. Audio, speech, Language process., 2007; 15(2): 702-714.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部