期刊文献+

基于遗传神经网络的纱线质量预测 被引量:17

Combining the Genetic Algorithm with Artificial Neural Networks for Yarn Quality Forecasting
下载PDF
导出
摘要 针对基于单一BP神经网络的纱线质量预测模型的不足,提出了一种基于遗传算法优化的神经网络的纱线质量预测模型,采用遗传算法完成对神经网络权值和阈值空间的寻优搜索,以提高神经网络的收敛速度和获得全局最优解的能力.通过试验表明,基于遗传算法优化的神经网络可以提高纱线质量预测模型的精度和稳定性,其性能优于基于单一BP神经网络模型的纱线质量预测. In order to solve the shortcomings of yarn quality forecasting model based on a single BP neural network, a yarn quality forecasting model based on genetic algorithm and neural network is proposed. The model adopts the genetic algorithm to complete the optimal search of the network weights and threshold space, which enhances the neural network convergence speed and the ability to obtain a global optimal solution. The experiments indicate that the neural network based on genetic algorithms can improve the accuracy and stability of the yarn quality forecasting model, and is superior to that based on a single BP neural network.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期504-508,共5页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(51175077) 中央高校基本科研业务费专项资金资助项目(12D10324)
关键词 纱线质量 遗传算法 BP神经网络 质量预测 yarn quality genetic algorithm BP neural network quality forecasting
  • 相关文献

参考文献10

  • 1REYEN M E, RKAN G P. Comparison of artificial neural network and linear regression models for prediction of ring spun yarn properties I. Prediction of yarn tensile properties [J]. Fibers and Polymers, 2008, 9(1): 87-91.
  • 2I.U Z J, XIANG Q, LI B Z, et al. Support vector machine withreal code genetic algorithm for yarn quality prediction [J]. Advanced Science Letters, 2013, 19(8):2468-2472.
  • 3李翔,彭志勤,金凤英,顾宗栋,薛元,胡国樑.基于神经网络的精纺毛纱性能预测模型比较[J].纺织学报,2011,32(3):51-56. 被引量:20
  • 4SANDHYAS.神经网络在应用科学和工程中的应用:从基本原理到复杂的模式识别[M].史晓霞,译.北京:机械工业出版社,2009:87-106.
  • 5HERTZ J. Introduction to the theory of neural computation [M]. MA: Addison-Wesley Press, 1991.
  • 6JOSPHAT I M,HUANG X B, WANG X H. The use of hybrid algorithms to improve the performance of yarn parameters prediction models[J]. Fibers and Polymers, 2012, la (9),, 1201-1208.
  • 7王侃枫,杨守仁.基于内置式物理模型的人工神经网络纱线质量预测模型(英文)[J].西安工程科技学院学报,2007,21(6):737-743. 被引量:3
  • 8雷英杰.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2011:146-207.
  • 9项前.可重构的纺织品智能工艺设计与虚拟加工方法及应用研究[D].上海:东华大学,2011.
  • 10高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-86. 被引量:241

二级参考文献36

  • 1王明会,刘伟权.汉语语义分析—神经网络方法[J].模式识别与人工智能,1993,6(3):212-217. 被引量:2
  • 2何小荣,陈丙珍,胡山鹰,朱振伟.一种新的BP神经网络培训方法[J].化工学报,1994,45(5):573-579. 被引量:15
  • 3章锦文,马远良.用于神经网络计算的多处理机系统[J].模式识别与人工智能,1994,7(2):157-160. 被引量:1
  • 4于建华.人工神经网络在油气识别中的应用[J].模式识别与人工智能,1994,7(1):47-52. 被引量:7
  • 5问新,周露,李翔,等.Matlab神经网络仿真与应用[M].北京:科学出版社,2003.
  • 6MAJUMDAR A,CIOCOIU M,BLAGA M.Modelling of ring yarn unevenness by soft computing approach[J].Fibers and Polymers,2008,9 (2):210-216.
  • 7(U)REYEN M E,G(U)RKAN P.Comparison of artificial aeural network and linear regression models for prediction of ring spun yarn properties:I.prediction of yarn tensile properties[J].Fibers and Polymers,2008,9(1):87 -91.
  • 8(U)REYEN M E,G(U)RKAN P.Comparison of artificial neural network and linear regression models for prediction of ring spun yarn properties:Ⅱ.prediction of yarn hairiness and unevenness[J].Fibers and Polymers,2008,9 (1):92-96.
  • 9GUHA A,CHATTOPADHYAY R,JAYADEV A.Predicting yarn tenacity:a comparison of mechanistic,statistical,and neural network models[J].Fiber Science and Textile Technology,2001,92 (1):139-145.
  • 10BABAY A,CHEIKHROUHOU M,VERMEULEN B,et al.Selecting the optimal neural network architecture for predicting cotton yarn hairiness[J].Journal of the Textile Institute,2005,96 (3):185-192.

共引文献271

同被引文献164

引证文献17

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部