期刊文献+

稀疏效应捕食—被捕食系统的持久性和周期轨道 被引量:4

PERSISTENCE AND PERIODIC ORBITS FOR PREDATOR-PREY SYSTEM WITH UNDERCROWDING EFFECT
下载PDF
导出
摘要 考虑一类稀疏效应非自治 Volterra捕食—被捕食系统 .证明了该系统在某些条件下是持久的 ,而且 ,若该系统是周期系统 ,在某些条件下 ,它们存在唯一的严格正周期轨道 ,且是全局渐近稳定的 . A nonautonomous Volterra predator prey system with undercrowding effect is considered.It is proved that the system can be made persistent under some approrpriate conditions.Further,if the system is a periodic system,it can have a strictly positive periodic orbit which is globally asymptotically stable under the approrpriate conditions.
作者 王基琨
出处 《广西师范大学学报(自然科学版)》 CAS 2000年第4期34-38,共5页 Journal of Guangxi Normal University:Natural Science Edition
关键词 捕食--被捕食 稀疏效应 周期轨道 数学生物学 predator prey undercrowding effect persistence periodic orbits
  • 相关文献

参考文献1

同被引文献16

  • 1罗桂烈,李德林,朴仲铉.一类多分子反应模型的极限环[J].广西师范大学学报(自然科学版),1994,12(4):28-32. 被引量:2
  • 2黄健民,罗桂烈,江佑霖.具扩散的三维Lotka-volterra捕食-被捕食系统的持久性和吸引性[J].广西师范大学学报(自然科学版),1997,15(1):18-22. 被引量:7
  • 3CUSHING J M. Integrodifferential Equations with Delay Models in Population Dynamics [ M]. Berlin:Springer-verlag, 1977.
  • 4YUAN S L,ZHANG F Q. Stability and Global Hopf Bifurcation in a Delayed Predator-prey System [J ], Nonlinear Anal:Real World Appl,2010,11:959-977.
  • 5SONG Y L, WEI J J. Local Hopf Bifurcation and Global Periodic Solutions in a Delayed Predator-preysystem [J ]. J Math Anal Appl,2005,301 : 1-21.
  • 6ZHANG J Z, J IN Z, YAN J,et al. Stability and Hopf Bifurcation in a Delayed Competition System [ J ]. Nonlinear Anal, 2009, 70 : 658-670.
  • 7YAN X P, LI W T. Bifurcation and Globalperiodic Solutions in a Delayed Facultative Nutualism System [J ]. Physica D, 2007, 227: 51-69.
  • 8XU C J ,TANG X H, LIAO M X. Stability and Bifurcation Analysis of a Delayed Predator-prey Model of Prey Dispersal in Two- patch Environments [ J ]. Appl Math Comput, 2010,216 : 2920-2936.
  • 9RUAN S G,WEI J J. On the Zero of Some Transcendential Functions with Applications to Stability of Delay Differential Equations with Two Delays [J]. Dyn Contin Discrete Impul Sys Ser A,2003,10:863-874.
  • 10HASSARD B, KAZARINO D, WAN Y. Theory and Application of Hopf Bifurcation [ M]. Cambridge:Cambridge University Press, 1981.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部