期刊文献+

General Modified Split-Step Balanced Methods for Stiff Stochastic Differential Equations 被引量:1

General Modified Split-Step Balanced Methods for Stiff Stochastic Differential Equations
下载PDF
导出
摘要 A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods. A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise.Compared to some other already reported split-step balanced methods,the drift increment function of the methods can be taken from any chosen one-step ordinary differential equations(ODEs)solver.The schemes is proved to be strong convergent with order one.For the mean-square stability analysis,the investigation is confined to two cases.Some numerical experiments are reported to testify the performance and the effectiveness of the methods.
出处 《Journal of Donghua University(English Edition)》 EI CAS 2013年第3期189-196,共8页 东华大学学报(英文版)
基金 National Natural Science Foundation of China(No.11171352)
关键词 split-step balanced methods stiff stochastic differential equations strong convergence mean-square stability 计量数学 数值分析 数学模拟 微分方程
  • 相关文献

参考文献20

  • 1Gillespie D T. Stochastic Simulation of Chemical Kinetics[J]. Annual Review of Physical and Chemistry, 2007, S8: 35-55.
  • 2Bodo B A, Thompson ME, Unny T E. A Review on Stochastic Differential Equations for Application in Hydrology[J]. Stochastic Hydrology and Hydraulics, 1987, 1(2): 81-100.
  • 3Platen E, Bruti-Liberati N. Numerical Solutions of Stochastic Differential Equations withJumps in Finance[M]. Berlin: Springer-Verlag, 2010.
  • 4Wilkinson DJ. Stochastic Modelling for Quantitative Description of Heterogeneous Biological Systems[J]. Nature Reviews Genetics, 2009, 10(2): 122-133.
  • 5Kloeden P E, Platen E. Numerical Solution of Stochastic Differential Equations[M]. Berlin: Springer-Verlag, 1992.
  • 6Saito Y, Mitsui T. Stability Analysis of Numerical Schemes for Stochastic Differential Equations[J]. SiamJournal on Numerical Analysis, 1996,33(6): 2254-2267.
  • 7Higham DJ. Mean-Square and Asymptotic Stability of the Stochastic Theta Method[J]. SiamJournal on Numerical Analysis, 2000, 38(3): 753-769.
  • 8Kloeden P E, Platen E, Schurz H. The Numerical Solution of Nonlinear Stochastic Dynamical Systems: a Brief Introduction[J]. InternationalJournal of Bifurcation Chaos, 1991, 1 (2) : 277-286.
  • 9Milstein G N, Repin Y M, Tretyakov M V. Numerical Methods for Stochastic Systems Preserving Symplectic Structure[J]. SiamJournal on Numerical Analysis, 2002, 40(4): 1583-1604.
  • 10Milstein G N, Platen E, Schurz H. Balanced Implicit Methods for Stiff Stochastic Systems[J]. SiamJournal on Numerical Analysis, 1998,35(3): 1010-1019.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部