摘要
针对现有危险源预警系统存在数据来源单一、依赖人工经验判断等问题,将物联网感知技术应用到危险源预警系统设计中,构建了适应井下巷道分布的簇状树形无线传感网络,设计了传感节点和Sink节点的硬件结构;基于特征选择Relief算法和BP神经网络,研究了信息融合和处理的应用算法,并进行了仿真实验。实验结果表明,将物联网感知技术应用于危险源预警系统提高了环境监测的覆盖面和数据采集效率,降低了系统的虚警率和漏检率。
For problems of single data source,reliance on manual experience to judge danger existed in current early warning system,perception technology of Internet of Things was applied to the early warning system of dangerous sources to establish a cluster-tree wireless sensor network and hardware structures of sensor nodes and sink node were designed.Algorithm of information fusion and processing based on Relief algorithm and BP neural network was studied and simulated.The experiment results show that the application of the perception technology of Internet of Things in early warning system of dangerous sources can improve efficiency of data acquisition and coverage of environmental monitoring,and reduce false alarm rate and undetected rate.
出处
《工矿自动化》
北大核心
2013年第9期50-53,共4页
Journal Of Mine Automation
基金
河南省高等学校青年骨干教师资助计划项目(2012GGJS-235)
关键词
矿井物联网
物联网感知
危险源预警
无线传感网
信息融合
RELIEF算法
BP神经网络
mine Internet of Things
perception of Internet of Things
early warning of dangerous sources
wireless sensor network
information fusion
Relief algorithm
BP neural network