摘要
为了强化理论知识的应用,利用锥度量型空间中自映射,讨论常数K的范围得出公共不动点的存在性和唯一性问题,证明了一个新的公共不动点定理.把锥度量型空间看作是锥度量空间的推广,在空间里,证明了4个映射的某些不动点定理.所得结论延伸和推广了文献中熟悉的相容性的一些论断.所有结论都在一致锥的背景下得到证明,且不需要假设函数的连续性.文章结果改进和发展了Aleksandar S Cvetkovi的结果.
In order to strengthen the application of theoretical knowledge, in this paper, by using cone metric space mappings, through the discussion of the constant K of a common fixed point, the existence and uniqueness of a common fixed point are solved, and a new common fixed point theorem is proved. In this paper we consider the so called cone metric type space, which is a generalization of cone metric space. We prove some common fixed point theorems for four mappings in those spaces. The obtained results extend and generalize well-known comparable results in the literature. All results are proved in the settings of a solid cone, without the assumption of continuity of mappings. This paper's results improve and develop Aleksandar s. Cvetkovi's results.
出处
《成都信息工程学院学报》
2013年第4期424-428,共5页
Journal of Chengdu University of Information Technology
基金
国家自然科学基金资助项目(11171046)
关键词
基础理论研究
锥度量型空间
自映射
弱相容组合
公共不动点
fundamental research
cone metric spaces
self-mappings
weakly compatible pairs
common fixed points