期刊文献+

区域分解型并行预条件的一种粗网格校正算法

A COARSE GRID CORRECTION ALGORITHM FOR DOMAIN DECOMPOSITION BASED PARALLEL PRECONDITIONERS
下载PDF
导出
摘要 区域分解是并行计算的基本手段之一,在稀疏线性方程组迭代求解时,对不完全分解等串行计算时很有效的预条件,经常采用区域分解的思想进行并行化。但区域分解的本质是利用局部解来近似全局解,从而必然存在较大误差,为此,提出一种粗网格校正算法,通过非重叠子区域浓缩,每个非重叠子区域浓缩为一个超结点,形成一个含全局信息且阶数等于子区域个数的小线性方程组,之后用其对原并行预条件进行校正。对块Jacobi型、经典加性Schwarz、以及因子组合型并行不完全分解预条件的实验表明,粗网格校正能有效改善收敛性并提高求解效率。 Domaindecomposition is one of the fundamental methods for parallel computing. During the solution of sparse linear systems with iterations, for the effective preconditioners in serial computation such as incomplete factorisation, it is usual to adopt the domain decomposition ideas to parallelise. But the essence of the domain decomposition is to approximate the global solution with local solutions, which must lead to significant errors. To reduce this error, a coarse grid correction algorithm is presented through the contraction of the non-overlapped sub-domains in this paper, with each sub-domain concentrating to a super node. A small linear system with small order is formed in this way, which contains the global information, and the order is equal to the number of domains. Then, the coarse grid operator is used to correct the original parallel preconditioners. Numerical experiments with block Jacobi-type, classical additive Schwarz, and factors combination-based parallel incomplete factorisation show that the provided coarse grid correction can improve the convergence effectively, thus improves the efficiency of the solution process.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第9期10-11,118,共3页 Computer Applications and Software
基金 国家自然科学基金项目(60803039,51079164) 水利部公益性行业科研专项(201201053) 国家重点基础研究发展计划项目(2009CB733803)
关键词 区域分解 并行计算 稀疏线性方程组 预条件 粗网格校正 Domain decomposition Parallel computing Sparse linear system Preeonditioner Coarse grid correction.
  • 相关文献

参考文献9

  • 1Benzi M. Preconditioning techniques for large linear systems : a survey[J]. Journal of Computational physics, 2002,182 : 418 - All.
  • 2Nakajima K,Okuda H. Parallel Iterative Solvers with Localized ILUPreconditioning for Unstructured Grids on Workstation Clusters [J] . In-ternational Journal of Computational Fluid Dynamics, 199,12(3 -4):315 -322.
  • 3Bru R,Pedroche F,Szyld D B. Overlapping Additive and MultiplicativeSchwarz Iterations for H-matrices[ J]. Linear Algebra and its Applica-tions,2004,393:91 ~ 105.
  • 4White R E. Multisplitting with different weighting schemes [ J]. SIAMJ. Matrix Anal. Appl. , 1989,10(4) :481 -493.
  • 5Cai X C, Sarkis M. A restricted additive Schwarz preconditioner for gen-eral sparse linear systems[ J] ? SIAM J. Sci. Comput. ,1991,21:792 -797.
  • 6Wu Jianping,Zhao Jun,Song Junqiang,et al. Impact of two factors onseveral domain decomposition based parallel incomplete factorizationsfor the meso-scale simulation of concrete [ C J//ICIC2010 : The ThirdInternational Conference on Information and Computing Science,Wuxi, China. 2010.
  • 7吴建平,宋君强,李晓梅.块三对角线性方程组不完全分解预条件的一种一维区域分解并行化方法[J].计算物理,2008,25(6):673-682. 被引量:3
  • 8吴建平,宋君强,张卫民,李晓梅.块三对角线性方程组的一类二维区域分解并行不完全分解预条件[J].计算物理,2009,26(2):191-199. 被引量:8
  • 9吴建平,王正华,李晓梅.带门槛不完全Cholesky分解存在的问题与改进[J].数值计算与计算机应用,2003,24(3):207-214. 被引量:15

二级参考文献6

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部