期刊文献+

双曲空间H^(n+1)(c)中具有平行Ricci曲率的常平均曲率超曲面 被引量:1

Hypersurfaces with Constant Mean Curvature with Parallel Ricci Curvature in Hyperbolic Space
下载PDF
导出
摘要 本文主要研究Ricci曲率平行的黎曼流形中具有常平均曲率的紧致超曲面,得到Simons型积分不等式,推广了一般的双曲空间中该曲率的有关结论。 This paper studies the hypersudaces with constant mean curvature in Riemannian with parallel Ricci curvature. Then we obtain an integral inequality of Simons' type. The conclusion of the curvature in Hyperbolic space is generalized.
作者 叶闻 宋卫东
出处 《安庆师范学院学报(自然科学版)》 2013年第3期30-32,共3页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省教育厅自然科学基金项目(KJ2010A125)资助
关键词 平行Ricci曲率 常平均曲率 超曲面 积分不等式 parallel Ricci curvature, constant mean curvature, hypersuface, integral inequality
  • 相关文献

参考文献2

二级参考文献33

  • 1Battiato S, BorhoW. Are there odd ami cable numbers not divisible by three [J]. Mathematics of Computation, 1988, 50: 633-637.
  • 2Battiato S, Borho W. Breeding amicable numbers in abundance Ⅱ [J].Mathematics of Computation,2000, 235(70): 1329-1333.
  • 3Borho W. On Tha bit ibn Kurrah's formula for amicable numbers [J]. Mathematics of Computation, 1972,118(26): 571-578.
  • 4Borho W. Some large primes and amicable numbers[J]. Mathematics of Computation, 1981, 118(36):303-304.
  • 5Borho W, Hoffmann H. Breeding amicable numbers in abundance [J]. Mathematics of Computation, 1986,173(46): 281-293.
  • 6Bratley P, Lunnon F, McKay J. Amicable numbers and their distribution [J]. Mathematics of Computation, 1970, 110(24): 431-432.
  • 7Dickson L E. Notes on the theory of numbers [J]. American Mathematical Monthly, 1911, 18: 109.
  • 8Garcia M. The first known type (7, 1) amicable pair [J]. Mathematics of Computation, 2003, 72(42):939-940.
  • 9Guy R K. Unsolved Problems in Number Theory [M]. 2nd Edition, Springer-Verlag, New York, 1994.
  • 10Krishnanurthy C. Some sets of amicable numbers of higher order [J]. Indian Journal of Pure and Applied Mathematics, 1980, 11(12): 1549-1553.

共引文献26

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部