期刊文献+

基于稠密子团和边聚类系数的局部社团挖掘算法 被引量:3

Detecting the community by integrating the dense sub-group and edge clustering coefficient
下载PDF
导出
摘要 发掘复杂网络的社团结构,有助于深入理解网络结构属性及其功能重要性。本文通过定义稠密子团,结合边聚类系数和局部模块度,提出一种DIDE社团挖掘算法。该算法通过选取稠密子团作为初始聚类团,利用边聚类系数扩张该稠密子团,最大化局部模块度值来生成社团结构。在计算机生成网络、三社团网络、Zachary网络和美国足球俱乐部网络上进行社团划分,验证该算法的可行性和有效性。 Detecting community structures in the complex networks can help us fully understanding the properties of networks structures and importance of their function. By defining the dense subgroup, combining edge clustering coefficient and local modularity, we proposed a DIDE algorithm for detecting community structures in this paper. We selected the dense sub group as initial cluster group, then expanded this dense subgroup using edge clustering coefficient, formed community structures by maximizing the value of local modularity. The simulation results on the computer generated network, the three groups network, Zachary network and American football club network show that DIDE is viable and effective.
出处 《电子设计工程》 2013年第18期36-40,共5页 Electronic Design Engineering
基金 国家自然基金资助(61170134)
关键词 复杂网络 局部模块度 稠密子团 边聚类系数 complex network local modularity dense sub group edge clustering coefficient
  • 相关文献

参考文献14

  • 1I ALBERT R,JEONG H,BARABSI A L. The diameter of the World Wide Web[J]. Nature, 1999(401 ):130-131.
  • 2SCOOT J P. Social network analysis: a handbook[M]. London: Sage Publications, 2000.
  • 3HOLME P,HUSS M,JEONG H. Subnetwork hierarchies of biochemical pathways[J]. Bioinformatics,2003,19(4):532-538.
  • 4NEWMAN M E J,Girvan M. Finding and evaluating community structure in networks. Phys.Rev.E,2004 (69): 02611.
  • 5Newman M E J. Fast algorithm for detecting community structure in networks. Phys. Rev.E,2004(69):066133.
  • 6WANG Xu-tao,CHEN Guang-rong,LU Hong-tao. A very fast algorithm for detecting community structures in complex networks[J]. Physica A, 2007,384 (2) :667-664.
  • 7胡健,杨炳儒.基于边聚集系数的社区结构发现算法[J].计算机应用研究,2009,26(3):858-859. 被引量:10
  • 8ZHANG Da-wei,XIE Fu-ding,ZHANG Yong,et al. Fuzzy analysis of community detection in complex networks [J]. Physica A: Statistical Mechanics and its Applications, 201 O, 389 (22) :5319-5327.
  • 9刘微,张大为,嵇敏,谢福鼎.基于共享邻居数的社团结构发现算法[J].计算机工程,2011,37(6):172-174. 被引量:7
  • 10Clauset A. Finding local community structure in networks.Phys[J]. Rev. E, 2005(72):026132.

二级参考文献68

  • 1Newman M E J. Scientific Collaboration Networks Ⅱ: Shortest Paths, Weighted Networks, and Centrality[J]. Physical Review E, 2001, 64(1): 132-135.
  • 2Girvan M, Newman M E J. Community Structure in Social and Biological Networks[EB/OL]. (2002-06-11). http://www.pnas.org/ cgi/reprint/99/12/7821 .pdf?ck=nck.
  • 3Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69(2): 113.
  • 4Clauset A, Newman M E J, Moore C. Finding Community Structure in Very Large Networks[J]. Physical Review E, 2004, 70(6): 111.
  • 5Xu Xiaowei, Yuruk N, Fang Zhidan, et al. SCAN: A Structural Clustering Algorithm for Networks[C]//Proc. of the t3th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA: [s. n.], 2007: 824-833.
  • 6Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 7Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 8Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 9Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 10Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.

共引文献228

同被引文献31

  • 1王国胤,李德毅,姚一豫,等.云模型与粒计算[M].北京:科学出版社,2012.
  • 2Newman M E J.Detecting community structure in networks[J].European Physical Journal,2004,38(2):321-330.
  • 3Adamic L A,Adar E.Friends and neighbors on the Web[J].Social Networks,2003,25(3):211-230.
  • 4Guimera R,Amaral L A N.Functional cartography of complex metabolic networks[J].Nature,2005,433(7028):895-900.
  • 5PALLA G,DERENYI I,FARKAS I,et al.Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2005,435(7043):814-818.
  • 6Zhang Shihua,Wang Ruisheng,Zhang Xiangsun.Identification of overlapping community structure in complex networks using fuzzy C-means clustering[J].Physical A:Statistical Mechanics and its Applications,2007,374(1):483- 490.
  • 7Gregory S.An algorithm to find overlapping community structure in networks[C]//Proc of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases.Berlin:Springer,2007:91-102.
  • 8Girvan M,Newman M E J.Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences,2002,99(12):7821-7826.
  • 9Shen Huawei,Cheng Xueqi,Cai Kai,et al.Detect overlapping and hierarchical community structure in networks[J].Physical A:Statistical Mechanics and its Applications,2009,388(8):1706-1712.
  • 10Lancichinetti A,Fortunato S.Detecting the overlapping and hierarchical community structure in complex networks[J].New Journal of Physics,2009,11(3):033015.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部