摘要
讨论了从单位圆盘上的Hardy空间Hp到对数Hardy-Bloch型空间BH p,L={f∈H(D):‖f‖p,L=sup z∈D(1-|z|)M p(|z|,f')log(e/1-|z|)<∞}的加权复合算子uCφ的有界性与紧性,主要得到以下结论:(i)uCφ是空间H∞到BH p,L(1≤p<∞)的有界算子与紧算子的充要条件;(ii)uCφ是空间Hq(1≤q<∞)到BH p,L(1≤p<∞)的有界算子与紧算子的充要条件.
The boundedness and compactness of the weighted composition operator uCφ fromHardy spaces Hp to Hardy-Bloch-type spaces BH_P,L={f∈H(D):‖f‖P,L=sup z∈D (1-|z|)M_P (|z|,f′)log(e/1-|z|)〈∞} Mp are researched. It is obtained as follows. (i) Some necessaryand sufficient conditions are given for which uC is a bounded operator or compact from H∞ toBH_P,L (1≤p〈∞) ; (ii) some necessary and sufficient conditions are given for which uCφ is a bounded operator or compact from Hq (1≤p〈∞) to BH_P,L (1≤p〈∞).
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第5期1-7,共7页
Journal of Fujian Normal University:Natural Science Edition
基金
福建省省属高校专项基金资助项目(JK2012010)
福建省自然科学基金资助项目(2009J0201)