期刊文献+

热工系统实用控制性能评价研究 被引量:1

Practical Control Performance Assessment in Thermal Control System
下载PDF
导出
摘要 面对热工系统控制回路多,控制要求高的现状,对其进行有效的性能评价是必要的。基于此,一种基于方差上下界的随机性能指标被提出,通过该指标可以判断控制系统的状态,并能给出其性能优化提升建议。然后针对指标实际应用中面临稳态数据选取、采样速率与控制速率不一致的两个问题,分别给出了基于最小熵的稳态数据选取办法和分段线性插值的数据重采样算法来解决。最后,通过仿真验证了性能指标和算法的有效性,并在某1 000MW火力发电机组的主汽压控制系统中进行了应用。 In the face of the thermal system control loop increaseing and the control for higher requirements, the effective perfor- mance evaluation is necessary. A novel stochastical performance benchmark is defined based on the upper and lower variance bound. Accoriding to the benchmark, the state of control system and the optimal control advice are avaiable. In practical, there are two problems: steady-state data selection and sampling rates faster than that used for data collection. To solving the two problems, steady-state data selection algorithm based on minimum entropy and data resampling algorithm using piecewise linear interpolation are proposed, respectively. Then, the effective of the benchmark and the algorithm is tested by simiulation. At last, the performance assessment method is used in the main steam pressure control system in a 1 0O00MM power plant.
出处 《自动化技术与应用》 2013年第9期1-6,9,共7页 Techniques of Automation and Applications
基金 国家重点基础研究发展计划项目(973计划)(2012CB215203) 国家自然科学基金重点项目(51036002) 中央高校基本科研业务(12QX19) 北京市教育委员会共建项目专项资助
关键词 性能评价 最小熵 数据重采样 主汽压控制系统 performance assessment minimum entropy data resampling main steams pressure control system
  • 相关文献

参考文献16

  • 1HARRIS TJ.Assessment of control loop performance [J].The Canadian Journal of Chemical Engineering, 1989, 67(5): 856-61.
  • 2HUANG B,SHAH SL.Practical issues in multi variable feedback control performance assessment[J]. Jour- nal of Process Control, 1998,8(5-6) :421-30.
  • 3DESBOROUGH L,HARRIS T.Performance as sessment measures for univariate feedback control [J].The Canadian Journal of Chemical Engineering, 1992,70(6): 86-97.
  • 4THORNHILL N,OETTINGER M,FEDENCZUK P. Performance assessment and diagnosis of refinery control loops[C]. 1998.
  • 5THORNHILL N,OETTINGER M,FEDENCZUK P. Refinery-wide control loop performance assessment[J]. Journal of Process Control, 1999, (9):9-24.
  • 6HORCH A,ISAKSSON AJ.A modified index forcontrol performance assessment[J]. Joumai of Process Control, 1999,9(6):475 83.
  • 7GRIMBLE M. Controller performance benchrnarking and tuning using generalised minimum variance control*l [J]. Automatica, 2002,38(12): 1-9.
  • 8KADALI R,HUANG B. Controller performance analysis with LQG benchmark obtained under closed loop conditions[J]. ISA transactions, 2002,41 (4) : 21-37.
  • 9GAO J,PATWARDHAN R,AKAMATSU K,et al. Performance evaluation of two industrial MPC controllers [J]. Control engineering practice, 2003,11 (12) : 71 87.
  • 10HUANG B,SHAH SL.Practical issues in multi- variable feedback control performance assessment[J].Jour nal of Process Control, 1998,8(5 6):21 30.

同被引文献13

  • 1谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2013.
  • 2李辉,陈教超,司风琪,徐治皋.数据预处理技术在电厂运行优化系统中的应用研究[J].华东电力,2007,35(11):110-113. 被引量:7
  • 3DESBOROUGH L,HARRIS T.Performance assessment measures for univariate feedforward/feedback control[J].Canadian Journal of Chemical Engineering,1993,71(71):605-616.
  • 4HUANG B,EK K,SL S.Good,bad or optimal Performance assessment of multivariable processes[J].Automatica,1997,33(6):1175-1183.
  • 5HUANG B,SHAH S L.Practical issues in multivariable feedback control performance assessment[J].Journal of Process Control,1998,8(5/6):421-430.
  • 6JIE Y,Qin S J.Statistical MIMO controller performance monitoring.Part I:Data-driven covariance benchmark [J].Journal of Process Control,2008,18(3-4):277-296.
  • 7贾学翠.基于协方差分析的多变量控制系统性能诊断[D].保定:华北电力大学,2008:13-14.
  • 8WANG B,CHIU M S.Online monitoring of control performance from servo information[C]//Proceeding of the 1998 IEEE ISIC/CIRA.ISAS Conference,Gaithersburg M D,Sept.,1998:221-226.
  • 9KAMMER L C,BITMEAD R R,BARTLETT P L.Optimal controller properties from closed-loop experiments[J].Automatic,1998,34(1):83-91.
  • 10赵宇,苏宏业,褚健,古勇.Multivariable Control Performance Assessment Based on Generalized Minimum Variance Benchmark[J].Chinese Journal of Chemical Engineering,2010,18(1):86-94. 被引量:12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部