摘要
讨论一类奇异二阶常微分方程非局部边值问题,利用锥上的不动点指数定理,通过分析非线性项f和g在零点和无穷远点的增长性以及与参数λ之间的关系,建立问题正解的存在性、不存在性与多解性结果,并给出研究这一问题正解的关键条件g M+h M<1.
The paper is concerned with a nonlocal boundary value problem of second-order singular ordinary dif- ferential equation. Applying the fixed-point index theorem in cones, we show the relationships between the growth off and g ( at zero and infinity) and the Parameter A, such that the problem has no, one and multiple positive(s). Also, a key condition of discussing the existence of positive solution(s) for the nonloeal boundary value problem is put forward,which is stated as: gM + hM 〈 1 .
出处
《广州大学学报(自然科学版)》
CAS
2013年第4期1-6,共6页
Journal of Guangzhou University:Natural Science Edition
基金
教育部人文社科规划基金资助项目(12YJA880074)
广东省科技计划资助项目(2011B031400012)
关键词
正解
非局部边值问题
常微分方程
锥
positive solution
nonlocal boundary value problem
ordinary differential equation
cone