期刊文献+

一类二阶非局部边值问题的正解 被引量:2

Positive solutions of second order nonlocal boundary value problem
下载PDF
导出
摘要 讨论一类奇异二阶常微分方程非局部边值问题,利用锥上的不动点指数定理,通过分析非线性项f和g在零点和无穷远点的增长性以及与参数λ之间的关系,建立问题正解的存在性、不存在性与多解性结果,并给出研究这一问题正解的关键条件g M+h M<1. The paper is concerned with a nonlocal boundary value problem of second-order singular ordinary dif- ferential equation. Applying the fixed-point index theorem in cones, we show the relationships between the growth off and g ( at zero and infinity) and the Parameter A, such that the problem has no, one and multiple positive(s). Also, a key condition of discussing the existence of positive solution(s) for the nonloeal boundary value problem is put forward,which is stated as: gM + hM 〈 1 .
出处 《广州大学学报(自然科学版)》 CAS 2013年第4期1-6,共6页 Journal of Guangzhou University:Natural Science Edition
基金 教育部人文社科规划基金资助项目(12YJA880074) 广东省科技计划资助项目(2011B031400012)
关键词 正解 非局部边值问题 常微分方程 positive solution nonlocal boundary value problem ordinary differential equation cone
  • 相关文献

参考文献13

  • 1TIMOSHENKO T. Theory of elastic theory [ M ]. New York : McGraw-Hill, 1971.
  • 2IL' IN V, MOISEEV E. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its operator in its differential and finite difference aspects[J]. J Differ Equ,1987,23:803-810.
  • 3MAR. Positive solutions for a nonlinear three-point boundary value problem[ J ]. Elect J Differ Equ, 1999,34:1-8.
  • 4GUPTA C, NTOUYAS S,TSAMATOS P. Solvability of an m-point boundary value problems for second order ordinary differ- ential equation [ J ]. J Math Anal Appl, 1995,189 : 575-584.
  • 5MAR. Existence of positive solutions for super linear semi-position m-point boundary-value problems[ J ]. Proc Edinb Math Soc, 2003,46 :279- 292.
  • 6KARAKOSTAS G L,TSAMATOS P. Existence results for some n-dimensional nonlocal boundary value problems[ J 1. J Math Anal Appl,2001,259 :429-438.
  • 7KONG L. Second order singular boundary value problems with integral boundary conditions[ J ]. Nonlin Ana, 2010,72 (5) : 2628-2638.
  • 8WEBB J R L. Positive solutions of some higher order nonlocal boundary value problems [ J ]. Elect J Qua! Theo Differ Equ, 2009,29 ( 15 ) : 18-34.
  • 9BAI D ,XU Y. Positive solutions and eigenvalue intervals of nonlocal boundary value problems with delays[J]. J Math Anal App1,2007,334 : 1152-1166.
  • 10MA R, WANG H. Positive solutions of nonlinear three-point boundary value problems [ J 1. J Math Anal Appl, 2003,279 ( 1 ) : 1216-1227.

二级参考文献13

  • 1TIMOSHENKO T. Theory of elastic theory[ M]. New York: McGraw-Hill, 1971.
  • 2MA Ru-yun. Nonlocal boundary value problems of nonlinear ordinary differential equations [ M ]. Beijing: Science Press, 2004. (in Chinese).
  • 3MAR. Positive solutions for a nonlinear three-point boundary value problem[J]. Electron J Diff Equ,1999,34:1-8.
  • 4IL'IN V, MOISEEV E. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[ J]. J Diff Equ, 1987,23:803-810.
  • 5GUPTA C, NTOUYAS S, TSAMATOS P. Solvability of an m-point boundary value problem for second order ordinary differen- tial equations [J]. J Math Anal Appl, 1995,189:575-584.
  • 6MA R. Existence of positive solutions for superlinear semipositone m-point boundary-value problems [ J ]. Proc Edinb Math Soc, 2003,46 : 279 -292.
  • 7KARAKOSTAS G L,TSAMATOS P. Existence results for some n-dimensional nonlocal boundary value problems [ J ]. J Math Anal Appl,2001,259 :429-438.
  • 8KONG L. Second order singular boundary value problems with integral boundary conditions [J]. Nonlin Anal, 2010,72 (5) :2628-2638.
  • 9WEBB J R L. Positive solutions of some higher order nonlocal boundary value problems [J]. Electron J Qual Theory Diff Equ,2009,29 : 1-15.
  • 10BAI D, XU Y. Positive solutions and eigenvalue intervals of nonlocal boundary value problems with delays [J]. J Math Anal Appl,2007,334 : 1152-1166.

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部