期刊文献+

甲型流感病毒HA蛋白质序列的预测 被引量:1

Prediction for Bases of Influenza Virus A /HA Protein Sequence
下载PDF
导出
摘要 基于CGR-游走模型和分数阶差分,用ARFIMA模型预测甲型流感病毒HA蛋白质序列。对所选取1943~2013年同源性相对较高的71条蛋白质序列,用ARFIMA(p,d,q)模型对前20个位置去拟合并且预测,除极个别外由预报区域图显示原始数据都在预报区域内,表明模型建立的比较合理,预报效果很好。这对流感病毒的研究和预测有着重要的意义。 Based on the chaos game representation walk model and the integer-order difference,the purpose of this paper is prediction for bases of influenza virus A/HA protein sequence.For the 71 selected protein sequences with high homology from 1943 to 2013,we use ARIMA(p,d,q) model to fit and predict its former 20 positions,almost all the raw data are in the forecast region except a few,showing that this model is more reasonable,and prediction of the effect is very good.It's important significance for the study and prediction of influenza virus.
作者 张玲 高洁
机构地区 江南大学理学院
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2013年第8期828-831,共4页 Journal of Food Science and Biotechnology
基金 国家自然科学基金项目(11002061) 中央高校基础研究专项项目(JUSRP21117)
关键词 甲流 HA蛋白质序列 预测 CGR游走模型 ARFIMA(p d q) influenza virus HA protein sequence prediction CGR walk model ARFIMA (p, d, q)
  • 相关文献

参考文献4

二级参考文献53

  • 1匡治州,郑丽舒,段招军,漆正宇,瞿小旺,刘文培,张万菊,李丹地,高寒春,侯云德.流感病毒神经氨酸酶广谱抑制多肽的筛选研究[J].病毒学报,2007,23(3):165-171. 被引量:4
  • 2Nikolski M, Sherman D J. Family relationships: should consensus reign-consensus clustering for protein families[J]. Bioinformatics, 2007, 23(2): 71-76.
  • 3Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215(3) : 403-410.
  • 4Pearson W R, Lipman D J. Improved tools for biological sequence eomparison[J]. Proc Natl Acad Sci USA, 1988, 85(8) : 2444-2448.
  • 5Durbin R, Eddy S R, Krogh A, et al. Biological Sequence Analysis[M]. Cambridge: Cambridge University Press, 1998.
  • 6Smith T F, Waterman M S. Identification of common molecular subsequences[J]. J Mol Biol, 1981, 147(1): 195-197.
  • 7Aittokallio T, Schwikowski B. Graph based methods for analysing networks in cell biology[J]. Brief Bioinform, 2006, 7 (3): 243-255.
  • 8Paccanaro A, Casbon J A, Saqi M A. Spectral clustering of protein sequences[J]. Nucleic Acids Res, 2006, 34(5) : 1571- 1580.
  • 9Enright A J, Van Dongen S, Ouzounis C A. An efficient algorithm for large-scale detection of protein families[J]. Nucleic Acids Res, 2002,30(7): 1575-1584.
  • 10Liao L, Noble W S. Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships[J]. J Comput Biol, 2003, 10(6): 857-868.

共引文献9

同被引文献11

  • 1Layne S P,Monto A S,Taubenberger J K. Pandemic influenza :an inconvenient mutation[J]. Science,2009,323(5921):1560.
  • 2Tokuriki N ,Tawfik D S. Stability effects of mutations and protein evolvability [J]. Current Opinion in Structural Biology, 2009,19(5) :596-604.
  • 3Lau K F,Dill K A. A lattice statistical mechanics model of the conformational and sequence spaces of proteins [J] Maeromoleeules, 1989,22 (10) : 3986-3997.
  • 4陈凤飞.蛋白质结构预测的三角化模型和算法[D].武汉:华中科技大学,2006.
  • 5Cust6dio F L,Barbosa H J C, Dardenne L E. Investigation of the three-dimensional lattice HP protein folding model using a genetic algorithm[J]. Genetics and Molecular Biology, 2004,27 (4) : 611-615.
  • 6Voelz V A, Bowman G R, Beauchamp K, et al. Molecular simulation of ab initio protein folding for a millisecond folder NTL9 ( 1- 39)[J]. Journal of the American Chemical Society,2010,132(5):1526-1528.
  • 7Dotu I,Cebrian M,Van Hentenryck P,et al. On lattice protein structure prediction revisited [J]. Computational Biology and Bioinformatics, 201 1, 8 (6) : 1620-1632.
  • 8Islam M, Chetty M. Clustered memetic algorithm with local heuristics for ab initio protein structure prediction[J]. 2013,17 (4) :558- 576.
  • 9Igarashi M, Ito K,Yoshida R, et al. Predicting the antigenic structure of the pandemic (H 1N1 ) 2009 influenza virus hemagglutinin [J]. PLoS One, 2010,5 ( 1 ) : e8553.
  • 10Dill K A, Bromberg S, Yue K, et al. Principles of protein folding--a perspective from simple exact models [J]. Protein Science, 1995,4(4) :561-602.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部