期刊文献+

基于摩擦模糊建模与补偿的机器人低速控制 被引量:9

Slow motion control of serial robots with friction compensation based on fuzzy logic system
下载PDF
导出
摘要 针对摩擦引起机器人低速时运动性能恶化、作业精确度变差的问题,提出考虑负载力矩影响的摩擦模糊建模方法及模糊自适应鲁棒控制策略。通过摩擦测量实验,提取关节摩擦随负载力矩变化的特征,并提出一种扩展摩擦模型以描述关节摩擦特性。为克服固定补偿难以处理摩擦不确定性的弱点,引入模糊逻辑系统逼近摩擦现象,并实现模型的线性化以设计自适应学习机制。在此基础上,设计模糊自适应鲁棒控制算法,该算法采用前馈的方式补偿关节摩擦的影响,自适应项实现参数的在线调整,并根据系统中不确定性的界,设计鲁棒控制项以保证系统的鲁棒性。对比实验结果表明,所提出的摩擦模型与控制算法使关节最大跟踪误差可控制在0.005°以内,与未考虑负载力矩影响的控制器相比,平均跟踪误差和最大跟踪误差分别降低了25%、14.55%。 Due to the friction, serial robots may appear control precision deterioration at low speed. To deal with this problem, fuzzy modeling of friction was proposed, which considered the impact of load torque, and a fuzzy adaptive robust controller was constructed. Firstly, based on joint friction measure- ment, variation characteristics between friction and load torque were analyzed. Then, an extended friction model was proposed. Since fixed compensation can not handle friction uncertainty, fuzzy logic system was involved to approximate the friction, and linear form of the fuzzy model was derived for adaptive algorithm design. Second, the fuzzy adaptive robust controller was designed. In this control scheme, a feed-forward term was involved for friction compensation, an adaptive term was adopted to adjust pa- rameters on-line, and a robust term was designed using uncertainty bounds to ensure robustness. Finally, experimental results illustrate that adopting the proposed friction model and controller, the maximum tracking error in joint space is less than 0.005 degree. Compared with the controller without considering load torque effect, the average error is reduced by 25%, and 14.55% for maximum error.
出处 《电机与控制学报》 EI CSCD 北大核心 2013年第8期70-77,共8页 Electric Machines and Control
基金 国家自然科学基金(61203337) 浙江省自然科学基金(LY13E050001) 高等学校博士学科点专项科研基金(20120075120009) 上海市自然科学基金(12ZR1440200)
关键词 机器人 低速 模糊建模 负载力矩 摩擦补偿 serial robots low speed fuzzy modeling load torque friction compensation
  • 相关文献

参考文献10

  • 1MOREL G, IAGNEMMA K, DUBOWSKY S. The precise control of manipulators with high joint-friction using base force/torque sensing[J]. Automatica, 2000, 36(7): 931-941.
  • 2LIU G, GOLDENBERG A A, ZHANG Y. Precise slow mo- tion control of a direct-drive robot arm with velocity esti- mation and friction compensation[J]. Mechatronics, 2004, 14(7): 821-834.
  • 3MOSTEFAI L, DENAI M, SEHOON O, et al. Optimal con- trol design for robust fuzzy friction compensation in a robotjoint[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3832-3839.
  • 4BITTENCOURT A C, GUNNARSSON S. Static friction in a robot joint-modeling and identification of load and temperature effects[J]. Journal of Dynamic Systems Mea- surement and Control-Transactions of the ASME, 2012, 134(5): 1-10.
  • 5WANG Y E WANG D H, CHAI T Y. Modeling and con- trol compensation of nonlinear friction using adaptive fuzzy systems[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2445-2457.
  • 6DEW/T C C, OLSSON H, ASTROM K J, et al. A new mod- el for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
  • 7倪风雷,刘宏,介党阳.基于速度观测器的GMS摩擦模型辨识与补偿[J].电机与控制学报,2012,16(11):70-75. 被引量:16
  • 8PHILLIPS S M, BALLOU K R. Friction modeling and compensation for an industrial robot[J]. Journal of Robotic Systems, 1993, 10(7): 947-971.
  • 9HAMON E GAUTIER M, GARREC E Dynamic identifi- cation of robots with a dry friction model depending on load and velocity[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, China. 2010:6187-6193.
  • 10MARTON L, LANTOS B. Modeling, identification, and compensation of stick-slip friction[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 511-521.

二级参考文献10

  • 1ARMSTRONG-HELOUVRY B, DUPONT P, DE WIT C C. A survey of models, analysis tools and compensation methods for the control of machines with friction [ J ]. Automatica,1994 ,30 (7) : 1083 - 1138.
  • 2DE WIT C C, OLSSON H, ASTRON K J, et al. Dynamic friction models and control design [ C ]//1993 American Control Conference, June 2- 4, 1993, San Francisco, USA. 1993:1920 - 1926.
  • 3LAMPAERT V, AL-BENDER F A, SWEVERS J. A generalized Maxwell-slip friction model appropriate for control purposes[ C ]// Proceedings of the 2003 International Physics and Control Conference, August 20 - 22, 2003, St. Petersburg, Russia. 2003, 4: 1170 - 1177.
  • 4AL-BENDER F A, LAMPAERT V, SWEVERS J. The generalized maxwell-slip model : a novel model for friction simulation and compensation [ J]. IEEE Transactions on Automatic Control, 2005, 50( 11 ) :1883 - 1887.
  • 5KELLY R, SANTIBANEZ V. Global regulation of elastic joint robots based on energy shapping [ J ]. IEEE Transactions on Automatic Control, 1998, 43(10) :1451 - 1456.
  • 6LUENBERGER D. An introduction to observers[J]. IEEE Transactions on Automatic Control, 1971, 16(6) :596 -602.
  • 7RUDERMAN M, HOFFMANN F, BERTRAM T. Modeling and identification of elastic robot joints with hysteresis and backlash [ J]. IEEE Transactions on Industrial Electronics, 2009, 56 (10) :3840 -3847.
  • 8周金柱,段宝岩,黄进.LuGre摩擦模型对伺服系统的影响与补偿[J].控制理论与应用,2008,25(6):990-994. 被引量:42
  • 9王毅,何朕,王广雄.一种实用的摩擦模型[J].电机与控制学报,2011,15(8):59-63. 被引量:15
  • 10黄显林,鲍文亮,卢鸿谦,尹航.一种具有时变观测器增益的摩擦补偿方法[J].电机与控制学报,2011,15(11):46-49. 被引量:4

共引文献15

同被引文献53

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部