期刊文献+

一种新的汉语连续语音声调评测算法 被引量:1

A novel tone evaluation algorithm for Chinese continuous speech
下载PDF
导出
摘要 提出一种新的连续语音的声调评测算法,该算法可应用于计算机辅助语言学习系统和普通话水平测试中的声调评测。考虑到连续语音声调受上下文之间的相互影响,采用三音节单元建立高斯混合模型(Gaussian Mixture Model,GMM),三音节中辅音部分用Spline插值法拟合声调曲线来反映音节间基音频率的转移信息,并利用Fujisaki模型去除语句的语调和说话人个性特征,只对基频曲线中的声调特征建模。实验结果显示,相比于传统方法,采用三音节Spline插值和Fujisaki改进特征的方法使得机器与人工打分的相似度在测试集中分别提高了8.75%和14.09%。 A new algorithm of objective tone evaluation for Chinese mandarin continuous speech is proposed, which can be used for the tone pronunciation training in Computer Assisted Language Learning (CALL) system and the test of Chinese mandarin speech named as Putonghua Shuiping Ceshi (PSC). A syllable's tone is influenced by context in continuous speech. Therefore, it is reasonable to use tri-syllables as basic units to train GMM (Gaussian Mixture Model) of tones. To get the transition information from the previous voiced region to the current one or from the current to the next voiced region, the pitch value of unvoiced region is interpolated with Spline function. Based on the Fujisaki model, only the lexical tone from the F0 contour is extracted to train GMM. The experimental results show that the correlations between subject and object evaluations based on Spline interpolation and Fujisaki model are improved by 8.75% and 14.09% respectively, comparing to the traditional features.
出处 《声学技术》 CSCD 2013年第4期305-311,共7页 Technical Acoustics
基金 国家自然科学基金资助项目(61271360) 苏州市应用基础研究计划资助项目(SYG201230)
关键词 声调评测 连续语音 Spline插值 Fujisaki模型 高斯混合模型 tone evaluation continuous speech Spline interpolation Fujisaki-model Gaussian Mixture Model
  • 相关文献

参考文献14

  • 1Yuen Renchao. A grammar of spoken Chinese[M]. Univ of Cali- fornia Pr, 1986:16-39.
  • 2王安红.汉语声调特征教学探讨[J].语言教学与研究,2006(3):70-75. 被引量:53
  • 3汤霖,尹俊勋.普通话声调的客观评测[J].中文信息学报,2007,21(6):116-124. 被引量:4
  • 4潘逸倩,魏思,王仁华.基于韵律信息的连续语流调型评测研究[J].中文信息学报,2008,22(4):88-93. 被引量:4
  • 5YE Tian, ZHOU Jianlai, CHU Min. Eric Chang. Tone recognition with fractionized models and outlined features[C]// Proc. of ICASSP, 2004: 105-108.
  • 6PAN Fuping, ZHAO Qingwei, YAN Yonghong. Improvements in tone pronunciation scoring for strongly accented mandarin speech[C]// International Symposium on Chinese Spoken Lan- guage Processing, 2006.
  • 7ZHANG Junbo, WU Hemin, YAN Yonghong. Tone Pronuncia- tion Quality Scoring of Mandarin Multi-syllable Words[C]//ICSP, 2010: 545-548.
  • 8CHEN Jiangcun. A study on pronunciation assessment and tone recognition in mandarin Chinese[D]. Tsinghua University, 2008.
  • 9Fujisaki H. Hirose K. Analysis of voice fundamental frequency Contours for declarative sentences of Japanese[J]. J. Acoust. Soc. Jpn., 1984, 5(4): 233-241.
  • 10Fujisaki H, WANG Changfu, Sumio Ohno, GU Wentao. Analysis and synthesis of fundamental frequency contours of standard Chinese using the command-response model[J]. Speeeh Commu- nication, 2005, 47(1-2): 59-70.

二级参考文献32

共引文献57

同被引文献33

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部