2[1]Carter, C.L., Hamilton, H.J. Efficient attribute-oriented algorithms for knowledge discovery from large databases. IEEE Transactions on Knowledge and Data Engineering, 1998,10(2):193~208.
3[2]Kukich, K. Techniques for automatically correcting words in text. ACM Computing Surveys, 1992,24(4):377~439.
4[3]Tian, Zeng-ping, Lu, Hong-jun, Ji, Wen-yun, et al. An n-gram-based pproach for detecting approximately duplicate database records. International Journal on Igital Library, 2001,5(3):325~331.
5[4]Agrawal, R., Srikant, R. Fast algorithms for mining association rules in large databases. In: Proceedings of the VLDB. 1994. 487~499.
6[5]Yu, Fang, Jin, Wen. An effective approach to mining exeption class association rules. In: Proceedings of the Web-Age Information Management 2000. 2000. 145~150.
7[6]Agrawal, R., Srikant, R. Mining sequential patterns. In: Proceedings of the ICDE. 1995. 3~14.
8[7]Agrawal, R., Ghosh, S., Imielinski, T., et al. An interval classifier for database mining applications. In: Proceedings of the VLDB. 1992. 560~573.
9[8]Zhou, Ao-ying, Qian, Wei-ning, Qian, Hai-lei, et al. A hybrid approach to clustering in very large databases. In: Proceedings of the 5th PAKDD. 2001. 519~524.
10[9]Ester, M., Kriegel, H.P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the KDD. 1996. 226~231.