期刊文献+

一种基于数据分布的SVM核选择方法 被引量:3

A SVM Kernel Selection Approach Based on the Characteristics of Data Distribution
下载PDF
导出
摘要 针对目前支撑向量机(SVM)核函数的选择没有统一规则的现状,提出一种结合数据分布特征进行SVM核选择的方法.首先,采用多维尺度(MDS)分析方法对高维数据集合理降维,提出判断数据集是否呈圆球分布的算法;然后,在得到数据集分布特征的基础上进行SVM核选择,以达到结合数据分布特征合理选择SVM核函数的目的.实验结果表明:呈圆球分布的数据集采用球面坐标核进行分类,识别率达到100%,训练时间最短,优于采用高斯核SVM及多项式核SVM的分类效果. The kernel selection has no unified rules for support vector machine (SVM). Based on the characteristics of dataset distribution, a new way to select the kernel function was presented. First dimension reduction of the high dimen- sional dataset was processed with multidimensional scaling (MDS) method. Then an algorithm was put forward, it was judged whether dataset is sphericity distribution. On the basis of determining sphericity distribution, how to select the kernel function was discussed, to achieve the purpose of selecting SVM kernel function with data distribution characteris- tics. The experimental results illustrate that the classification recognition rate of sphericity datasets reaches 100% with sphere kernel and the training time is the shortest. The classification effect is better than that of using gaussian kernel SVM and polynomial kernel SVM.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2013年第5期525-528,共4页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61273291) 山西省高等学校科技研究开发项目(20121131) 山西大学商务学院科研基金资助项目(2012013)
关键词 支撑向量机 核函数 核选择 数据分布 多维尺度 support vector machine kernel function~ kernel selectiofi data distribution multidimensional scaling
  • 相关文献

参考文献17

  • 1VAPNIK V. The nature of statitiscal learning theory[M]. New York: Spring Verlag Press, 1995:4-15.
  • 2WANG Wen-.jian,XU Zong-ben, LU Wei-zhen, et al. Determination of the spread parameter in the Gaussian kernel for classification and regression[J]. Neurocomputing, 2003,55 (3/4) : 643-663.
  • 3孙建涛,郭崇慧,陆玉昌,石纯一.多项式核支持向量机文本分类器泛化性能分析[J].计算机研究与发展,2004,41(8):1321-1326. 被引量:16
  • 4张 莉,周伟达,焦李成.一类新的支撑矢量机核[J].软件学报,2002,13(4):713-718. 被引量:13
  • 5WANG Jin-iun, YANG Jian-chao, YU Kai, et al. Locality constrained linear coding for image classification[J].CVPR, 2010,15 (3) : 456-470.
  • 6WANG Xiao-ming, CHUNG Fu-lai, WANG Shi-tong. Theoretical analysis for solution of support vector data de- scription[J]. Neural Networks, 2011,24(4) : 360-369.
  • 7ZAFEIRIOU S,TEFAS A,PITAS I. Minimum class variance support vector machines[J]. IEEE Transanctions on Image Processing, 2007,16 (10) : 2551-2564.
  • 8ZHOU Xi,CUI Na, LI Zhen,et al. Hierarchical gaussianization for image ctassification[J]. ICCV, 2009,18(3):79- 90.
  • 9HUANG Kai-zhu,YANG Hai-qing,KING I, et al. Maxi-min margin machine: Learning large margin classifiers lo- cally and globally[J]. IEEE Transanctions on Neural Networks,2008,19(2) :260-272:
  • 10YU Kai, ZHANG Tong, GONG Yi-hong. Nonlinear learning using local coordinate coding[J]. NIPS, 2009,26 (8) : 342-356.

二级参考文献16

  • 1C Cortes, V N Vapnik. Support vector networks. Machine Learning, 1995, 20(3): 273-297
  • 2C Burges. A tutorial on support vector machines for pattern recongnition. Data Mining and Knowledge Discovery, 1998, 2(2): 1~43
  • 3T Joachims. Text categorization with support vector machines:Learning with many relevant features. In: C Nedellec ed. Proc of ECML-98. Heidelberg: Springer-Verlag, 1998. 137~142
  • 4E Leopold, J Kindermann. Text categorization with support vector machines, How to represent texts in input space? Machine Learning, 2002,46(1-3): 423~444
  • 5N Cristianini, J S Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. New York:Cambridge University Press, 2000
  • 6Y Yang, S Slattery, R Ghani. A study of approaches to hypertext categorization. Journal of Intelligent Information Systems, 2002,18(2/3): 219~241
  • 7V N Vapnik. Statistical Learning Theory. New York:John Wiley & Sons, 1998
  • 8V N Vapnik. The Nature of Statistical Learning Theory, 2nd edition. New York: Springer-Verlag, 2000
  • 9吴佑寿,赵明生,丁晓青.一种激励函数可调的新人工神经网络及应用[J].中国科学(E辑),1997,27(1):55-60. 被引量:26
  • 10Vapnik,V.The Nature of Statistical Learning Theory.New York: Springer-Verlag,1995.

共引文献32

同被引文献25

  • 1门昌骞,王文剑.基于凸包估计的核参数选择方法[J].计算机工程与设计,2006,27(11):1961-1963. 被引量:5
  • 2王平,王文剑.基于时序核函数的支持向量回归机[J].计算机辅助工程,2006,15(3):35-38. 被引量:3
  • 3石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 4RADHAKRISHNAN R, DIVAKARAN A. Systematic acquisition of audio classes for elevator surveillance[C] ff SPIE Image and Video Communications and Processing. San Jose: [s. n. ],2005: 64- 71.
  • 5ATREY P K, MADDAGE N C, KANKANHALLI M S. Audio based event detection for multimedia surveillance [C]ffInternational Conference on Acoustics, Speech and Signal Processing. Toulouse.. IEEE Press,2006:3-5.
  • 6AUCOUTURIER J J. The bag-of-flames approach to audio pattern recognition; A sufficient model for urban sound scapes but not for polyphonic music [J]. Journal of Acoustical Society of America, 2007,122(2):881-891.
  • 7ZENG Zhi,ZHANG Shuwu. A novel approach to musical genre classification using probabilistic latent semantic a- nalysis model[C] // International Conference on Multimedia and Expo. New York: IEEE Press, 2009: 486- 489.
  • 8李航.统计学习方法[M].北京:清华大学出版社,2013:37-40.
  • 9VAPNIK V. The nature of statitiscal learning theory[M]. New York: Spring Verlag Press, 1995.
  • 10KRAWCZYK B, WOZNIAK M, HERRERA F. On the usefulness of one-class classifier ensembles for decomposition of multi class problems[J]. Pattern Recognition,2015,48(12) :396943982.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部