摘要
利用Legendre多项式的定义和性质,给出Legendre多项式微分算子矩阵,得到任意阶弱奇异积分的近似求积公式,并将原方程转换为代数方程.收敛性分析说明该方法是收敛的,数值算例验证了该方法的有效性和理论分析的正确性.
One derivative operational matrix of Legendre polynomials is given by using the definition of Legendre potyno- mials and some properties. And an approximate formula which solves solution of arbitrary order weakly singular integral is also obtained and the original equation is transformed into algebraic equation Convergence analysis shows that the method is convergent. Finally, numerical example is provided to verify the validity of the method and the correctness of the theoretical analysis.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2013年第5期581-585,共5页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金资助项目(11101282)
关键词
高阶变系数
弱奇异积分
积分微分方程
LEGENDRE多项式
算子矩阵
数值解
high order variable coefficients
weakly singular integral
integro-differential equation
Legendre polynomial
operational matrix
numerical solution