期刊文献+

算子矩阵法求高阶弱奇异积分微分方程数值解 被引量:1

Operational Matrix Method for Solving the Numerical Solution of High Order Integro-Differential Equation with Weakly Singular
下载PDF
导出
摘要 利用Legendre多项式的定义和性质,给出Legendre多项式微分算子矩阵,得到任意阶弱奇异积分的近似求积公式,并将原方程转换为代数方程.收敛性分析说明该方法是收敛的,数值算例验证了该方法的有效性和理论分析的正确性. One derivative operational matrix of Legendre polynomials is given by using the definition of Legendre potyno- mials and some properties. And an approximate formula which solves solution of arbitrary order weakly singular integral is also obtained and the original equation is transformed into algebraic equation Convergence analysis shows that the method is convergent. Finally, numerical example is provided to verify the validity of the method and the correctness of the theoretical analysis.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2013年第5期581-585,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11101282)
关键词 高阶变系数 弱奇异积分 积分微分方程 LEGENDRE多项式 算子矩阵 数值解 high order variable coefficients weakly singular integral integro-differential equation Legendre polynomial operational matrix numerical solution
  • 相关文献

参考文献10

  • 1GULSU M, OZTURK Y, SEZER M. A new collocation method for solution of mixed linear integro-differential- difference equations[J]. Appl Math Comput, 2010,216 (7) : 2183-2198.
  • 2YOUSEFI S, BEHROOZIFAR M. Operational matrices of Bernstein polynomials and their applications[J]. Internat J Systems Sci, 2010,41(6) : 709-716.
  • 3DOHA E H, BHRAWY A H, SAKER M A. Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations[J]. Appl Math Lett, 2011,24 (4) : 559-565.
  • 4DELVES L M, MOHAMED J L. Computational methods for integral equations[M]. Cambridge: Cambridge Univer- sity Press, 1985 : 20-35.
  • 5SCHIAVANE P, CONSTANDA C, MIODUCHOWSKI A. Integral methods in science and engineering [M]Birkh/iuser: Birkh:iuser Boston, 2002 : 100-116.
  • 6HOLMAKER K. Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones[J]. SIAM J Math Anal: 1993,24(1) : 116-128.
  • 7MALEKNEJAD K. An efficient numerical approximation for the linear class of Fredholm integro-differential equa- tions based on Cattani:s method[J]. Commun Nonlinear Sci Numer Simulat,2011,16(7) :2672-2679.
  • 8HOSSEINI S M, SHAHMORAD S. Numerical solution of a class of Integro-differential equations by the tau method with an error estimation[J]. Appl Math Comput, 2003,136(2/3) : 559-570.
  • 9SAADATMANDI A, DEHGHAN M. A new operational matrix for solving fractional-order differential equations [J]. Computers and Mathematics with Applications, 2010,59(3):1326-1336.
  • 10YALCINBAS S, SEZER M, SOUKUN H H. Legendre polynomial solutions of high-order linear Fredholm integro- differential equations[J]. Appl Math Comput, 2009,210 (2) : 334-349.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部