期刊文献+

有限可解群的Brauer特征标表的一个注记

A Note on the Brauer Character Table of Finite Solvable Groups
下载PDF
导出
摘要 Masahiko Miyamoto证明了如果A是有限群G的一个初等交换的正规q-子群,Q是G的一个西罗q-子群,那么G的所有不可约特征标都不会零化Z(Q)∩A.本文将该结果推广到Brauer特征标上,证明了若x∈Z(Q)∩Oq(G)是G的q阶元素,那么G的所有不可约p-Brauer特征标都不能零化它,其中p≠q.此外,得到对于非p-群的有限可解群,其Brauer特征标表必有一非平凡的列不取零值. Masahiko Miyamoto has proved that if A is an elementary abelian normal q-subgroup of a finite group G and Q is a Sylow q-subgroup of G,then no irreducible character of G vanish on any element of Z(Q) ∩A. In this paper,we extend it to Brauer charac- ters and show that if x∈ Z(Q) ∩ Oq (G) of order q, then no p-Brauer characters can vanish it, where p≠q. Moreover, we obtain that for a finite solvable group which is not a p-group,its Brauer character table has a nontrivial column without zero value.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期590-591,共2页 Journal of Xiamen University:Natural Science
基金 国家自然科学青年科学基金项目(11201385) 福建省自然科学基金项目(2011J01022) 福建省教育厅A类科技项目(JA12336)
关键词 可解群 BRAUER特征标 p-正则元 solvable group Brauer character p-regular element
  • 相关文献

参考文献8

  • 1Isaacs I M, Navarro G, Wolf T R. Finite group elements where no irreducible character vanishes[J]. J Algebra, 1999,222 : 413-423.
  • 2Moreto A, Wolf T R. Orbit sizes, character degrees and Sylow subgroups[J]. Adv Math, 2004,184 : 18-36.
  • 3Dolfi S, Navarro G, Pacifici E, et al. Non-vanishing ele- ments of finite groups[J]. J Algebra, 2010,323 : 540-545.
  • 4Miyamoto M. Non-vanishing elements in finite groups [J]. J Algebra, 2012,364 : 88-89.
  • 5Doifi S, Paeifiei E, Sanus L, et al. On the orders of zeros of irreducible characters[J]. J Algebra, 2009,321 : 345-352.
  • 6He L. Notes on non-vanishing elements of finite solvable groups[J]. Bull Malays Math Sci Soc, 2012,35 : 163-169.
  • 7Malle G, Navarro G. Characterizing normal Sylow p-sub- groups by character degrees [J]. J Algebra, 2012, 370 : 402-406.
  • 8Navarro G. Characters and blocks of finite groups[M]. Cambridge: Cambridge University Press, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部