期刊文献+

双线性扩张范畴

Double-linear Extension Categories
下载PDF
导出
摘要 双线性扩张范畴C=A[M,N,φ,ψ]B的模范畴C Mod是双扩张代数的自然推广,且等价于四元组范畴C T.作为应用,给出了2-循环复形范畴与特殊的双扩张范畴等价的证明,以及由范畴A或B中的某些AR-序列可得C T中的部分AR序列. The notion of the left module category over k-linear double-extension categories is a generalization of a double-extension algebra, and it is isomphie to the quadruple category ,eft.. As a main application of the result we use a special double-extension category to describe a 2-cycle complex category. And more, from some Austander-Reiten sequences in A or B we can obtain some Auslander- Reiten sequences in the corresponding quadruple category eF.
作者 陈娟
机构地区 集美大学理学院
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期600-602,共3页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金项目(11201178)
关键词 k-线性范畴 双扩张范畴 2-循环复形范畴 AR序列 k-linear category double-extension category 2-cycle complex category Ausiander-Reiten sequences
  • 相关文献

参考文献6

  • 1Cibils C,Solotar A. Galois coverings, Morita equivalences and smash extensions of categories over a field[J]. Doc Math, 2006,11 : 143-159.
  • 2Cibils C, Marcos E. Skew category, Galois covering and smash product of a category over a ring[J]. Proc Amer Math Soc,2006,134 (1) :39-50.
  • 3Cibils C, Redondo M J. Cartan-Leray spectral sequence for Galois coverings of categories [J]. J Algebra, 2005, 284 (1) :310-325.
  • 4刘核.广义向量空间范畴与代数的双扩张[D].成都:四川大学,1999.
  • 5陈娟.k-线性双扩张范畴(I)[J].数学实践与认识,2012,42(1):188-194.
  • 6林增强.k-线性三角矩阵范畴[J].厦门大学学报(自然科学版),2010,49(4):449-451. 被引量:3

二级参考文献6

  • 1Cibils C,Solotar A. Galois coverings, morita equivalences and smash extensions of categories over a field[J]. Doc Math, 2006,11 : 143-159.
  • 2Cibils C, Marcos E. Skew category, galois covering and smash product of a category over a ring[J]. Proc Amer Math Soc,2006,134(1) :39-50.
  • 3Cibils C,Redondo M J. Cartan-Leray spectral sequence for galois coverings of categories [J]. J Algebra, 2005,284 (1) :310-325.
  • 4Herscovieh E, Solotar A. Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions [J]. J Algebra,2007,315(2) :852-873.
  • 5Auslander M, Reiten I, Smalo S O. Representation theory of Artin algebra [ M]. Cambridge: Cambridge University Press, 1995.
  • 6Mitchell B. Rings with several objects[J]. Advances in Math, 1972,8 : 1-27.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部