期刊文献+

连接管路对附加气室空气弹簧刚度特性影响的试验研究 被引量:3

Test Study of the Effect of Connecting Pipe on Dynamic Characteristics of Air Spring with Auxiliary Chamber
下载PDF
导出
摘要 带附加气室的空气弹簧系统中连接管路对系统特性有重要影响,搭建使用管路连接附加气室的空气弹簧刚度特性试验系统,在(0.5—10)Hz的激振频率激励下,采用四种不同管路内径、三种不同管路长度的连接管路,对空气弹簧特性台架进行试验,分析管路因素对弹簧特性的影响规律并探讨影响机理。试验结果表明:随着管路内径增大,系统刚度逐渐降低,当管路内径增大到一定值时,管路对空气弹簧刚度的影响比重变小;不同管路长度对系统动刚度的影响主要集中在低频阶段,在同一频率下,系统动刚度随管路长度增加而增大;最后,通过试验对连接管路两端主、附气室气压的幅值差和相位差进行分析,验证了不同管路内径及长度对空气弹簧系统动刚度影响的正确性。 In view of important influence of air spring with auxiliary chamber connected with pipe, the test-platform for the system is built. The stiffness characteristics of air spring with 4 different pipe diameter,4 different pipe length in excitation frequency range of (0.5-10)Hz are tested, and influence principle of pipe parameters on the characteristics of spring and working mechanism are analyzed. The experimental results show that: as the connecting pipe diameter increases, the spring dynamic stiffness will decrease correspondingly; however, when pipe diameter increases to a certain value, influence proportion of the pipe for stiffness will become smaller; influence of dynamic stiffness with different pipe length is mainly concentrated in the low-frequeney stage, and the dynamic stiffness increases as pipe length become larger in same excitation frequency. Data of amplitude difference and the phase difference between the main chamber and auxiliary chamber are analyzed by test, and validity of influence of the spring dynamic stiffness for different pipe is verified.
出处 《机械设计与制造》 北大核心 2013年第10期51-53,57,共4页 Machinery Design & Manufacture
基金 国家自然科学基金(51075190) 教育部博士点基金(20103227110010) 江苏省研究生培养创新工程基金(CXLX12-0656)
关键词 空气弹簧 连接管路 附加气室 动刚度 Air Spring Connecting Pipe Auxiliary Chamber Dynamic Stiffness
  • 相关文献

参考文献8

二级参考文献15

  • 1原亮明,宫相太,刘爽堃,王渊.铁道车辆空气弹簧垂向动态特性分析方法的研究[J].中国铁道科学,2004,25(4):37-41. 被引量:19
  • 2胡芳,陈无畏.基于非线性模型的汽车空气悬架系统模糊控制研究[J].合肥工业大学学报(自然科学版),2005,28(7):772-777. 被引量:9
  • 3[4]Yon Jacek Grajnert, Otmar Krettek Aachen. Zur Phainomenologie und Ersatzmodellbildung von Luftfedern [J]. ZEV+DET, 1991, 115 (7/8): 218-223.
  • 4[5]Von J acek Grajnert, Otmar Krettek Aachen. Zur Frage der Dynamischen Eigenschaften Pneumatischer Abfederungen mit Niveauregelung [J]. ZEV+ DET, 1991, 115 (11/12): 352-359.
  • 5D'Amato F J,Viassolo D E.Fuzzy control for active suspensions [J]. Mechatronics, 2000,10 (8) : 897-920.
  • 6Giuseppe Quaglia, Massimo Sorli. Air suspension dimensionless analysis and design procedure[J]. Vehicle System Dynamics, 2001, 35 (6): 443-475.
  • 7ContiTECH Holding GmbH. ContiTECH air springs for commercial vehicles[ R]. Hannover: ContiTECH Holding GmbH, 2001.
  • 8Malin Presthus. Derivation of air spring model parameters for train simulatio[D]. Lulea: Lulea University of Technology, 2002.
  • 9Toyofuku, Katuya. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. JSAE Review, 1999, 20(3) :350-355.
  • 10梁杰.丰田 LEXUS LS400 型轿车的电子控制悬架[J].汽车技术,1997(9):43-48. 被引量:3

共引文献80

同被引文献28

  • 1贺亮,朱思洪.带附加空气室空气弹簧垂直刚度和阻尼实验研究[J].机械强度,2006,28(z1):33-36. 被引量:19
  • 2李滨,陈无畏.汽车膜式空气弹簧的分析与计算[J].合肥工业大学学报(自然科学版),2004,27(10):1191-1195. 被引量:9
  • 3刘增华,李芾,傅茂海,黄运华.半主动空气弹簧悬挂系统控制策略及仿真分析[J].系统仿真学报,2007,19(13):3022-3025. 被引量:7
  • 4沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2007.
  • 5TB/T2841-2010铁道车辆空气弹簧[S].
  • 6Sebastian Kurczyk, Marek Paweczyk. Fuzzy Control for Semi-Active Vehicle Suspension [ J ]. Journal of Low Fre- quency Noise, Vibration and Active Control, 2014, 42 : 323 - 328.
  • 7Ruey-Jing Lian, Bai-Fu Lin, Wun-Tong Sie. Self-organi- zing fuzzy control of active suspension systems [ J ]. Inter- national Journal of Systems Science, 2005, 36 : 363 - 369.
  • 8GII_SDORF H J. Pneumatic Spring with Integrated Control Valve: United States, US6923433 [ P]. 2005 - 08 - 02.
  • 9张磊.集成空气弹簧悬挂装置:中国,CN2030zl-7407U[P].2013—07—10.
  • 10张华,徐恒波.高度阀内置式空气弹簧减振器总成:中国,CNl04534007A[P].2015-04—22.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部