期刊文献+

未知环境下机器人避障设计研究 被引量:7

Design of Robot Obstacle Avoidance in Unknown Environment
下载PDF
导出
摘要 随着信息技术的发展,各个领域越来越需要高性能的自动化系统。机器人技术飞速发展,研究重点已经转向在复杂、未知、不可预测环境中独立工作的自主式智能机器人。介绍了机器人Q学习避障算法的实现方法,并构建了仿真实验平台,模拟了移动机器人在未知环境下自主地、安全地从起始点到达目标点的过程。通过仿真实验验证了Q学习实现机器人在未知环境下的行为选择控制是可行的、有效的,并验证机器人在未知环境下具有良好的越障性能。 With the development of information technology, high-performance automation systems are increasingly required in various fields. With rapid development of robotics technology, research focus has been shifted to autonomous intelligent robots working independently in a complex, unknown, unpredictable environment.It describes the Q-learning algorithm to achieve obstacle avoidance methods, and build a simulation platform to simulate the process of a mobile robot reaching the target from the starting point independently and safely in unknown environment. The simulation experiments validate that the control over a robot's choice of behavior in unknown environment through Q-learning is feasible and effective, and verify that a robot has a good performance on obstacle crossing in unknown environment.
机构地区 沈阳化工大学
出处 《机械设计与制造》 北大核心 2013年第10期236-238,共3页 Machinery Design & Manufacture
关键词 机器人 Q学习算法 避障 神经网络 Robot Q-Learning Algorithm Obstacle Avoidance Neural Network
  • 相关文献

参考文献4

二级参考文献3

共引文献8

同被引文献69

  • 1万佑红,蒋国平.机器人教育与大学生创新能力培养的探索[J].电气电子教学学报,2005,27(4):6-8. 被引量:69
  • 2唐鸿儒,宋爱国.半自主侦察机器人研究[J].制造业自动化,2005,27(12):30-35. 被引量:12
  • 3陈殿生,杨喜,李强.小型地面侦察机器人移动载体技术研究[J].机器人技术与应用,2006(6):43-46. 被引量:7
  • 4唐鸿儒,宋爱国.危险环境侦察机器人的研究进展[J].机器人技术与应用,2007(3):29-35. 被引量:7
  • 5Fox D. International assessment of research and development in ro- botics[ R ]. Arlington, VA, USA: World Technology Evaluation Center, 2006.
  • 6Sarif N, Buniyamin N. An overview of autonomous mobile robot path planningalgorithms 4th Student Conference on Research and Development"Towards Enhancing Research Excellence in the Re- gion"[C]//Shah Alum, Malaysia : IEEE, 2006 : 183-188.
  • 7Sun X, Yeoh W, Kenning S. Moving Target D Lite[C]//Interna- tional Joint Conference on Autonomous Agents and Multi-agent Systems(AAMAS). 2010 : 67-74.
  • 8Nasrollahy A Z, Javadi H. Using Particle Swarm Optimization for Robot Path Planning in Dynamic Environments with Obstacles and Target[C]//UK-Sim 3rd EuropeanModelling Symposium on Com- puter Modeling and Simulation. Athens, Greece : IEEE, 2009 : 60-65.
  • 9Yang G,Shu-dong S. Local Path Planning of Mobile Robots in Dy- namic Unknown Environment Based on Prediction of Collision [C]//lnterna _ional Conference on Mechatronics Technology and Mechatronics Automation. Zhangjiajie, Hunan, China: IEEE Com- puter Society, 2009 : 84-88.
  • 10DZ,CZ, ZR ZR. A hybrid approach of virtual force and A searchalgorithm for UAV pathpreplanning[C]//IEEE Conference on In dustrial Electronics and Applications 0C1EA). Beijing. IEEE, 2011: 1140-1145.

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部