期刊文献+

改进NSGA-Ⅱ算法在装备保障运输问题中的应用 被引量:3

Application of Improved NSGA-Ⅱ in Equipment Supply Transportation
下载PDF
导出
摘要 通过对战时装备保障运输场景的分析,建立了以运输距离、费用和风险系数为目标的多目标路径优化模型。将多目标遗传算法NSGA-Ⅱ用于该模型求解,对传统的NSGA-Ⅱ算法进行改进,在进化中增加精英保留策略和小生境密度,克服了求解多目标优化过程易陷入局部最优的问题。仿真实验结果表明:利用改进的NSGA-Ⅱ算法求解多目标路径优化问题,决策者能够有效地获得最优的运输方案以及最优的备用运输路径。 By analyzing the transportation problem about the supply of wartime equipment, builds a multi-objective model of vehicle routing problem including travel distance, cost and risk indexes for targets. Genetic algorithm NSGA- Ⅱ is applied into solve this model, and improved by introducing with elitism strategy and niche density, which are inspired to accelerate the convergence without leading to local optimization. Finally, the validity of the model and the algorithm are proven by analyzing an example, and an effective solution for the transportation problem about the supply of wartime equipment is provided.
出处 《兵工自动化》 2013年第10期33-36,65,共5页 Ordnance Industry Automation
基金 国家自然科学基金(61205206)
关键词 装备保障 多目标 模型 NSGA-Ⅱ算法 equipment support multi-objective model NSGA- Ⅱ algorithm
  • 相关文献

参考文献7

二级参考文献18

共引文献25

同被引文献23

  • 1赵瑞国,李界家.NSGA-Ⅱ算法及其改进[J].控制工程,2009,16(S1):61-63. 被引量:5
  • 2李宁,邹彤,孙德宝.带时间窗车辆路径问题的粒子群算法[J].系统工程理论与实践,2004,24(4):130-135. 被引量:60
  • 3Miaou S P, Cnin S M. Computing k shortest paths for nuclearspent fuel highway Transportation[J]. European Journal of Op-erational Research , 1991,53(1):64 - 80.
  • 4Erkut E. The discrete p-dispersion problem[J]. European Jour-nal of Operational Resea rch , 1990,46(1): 48 - 60.
  • 5Cook K L, Halsey E. The shortest route through a networkwith time-dependent internode transit times [ J ]. Journal ofmathematical analysis and applications , 1996 ,14(3) :493 - 498.
  • 6Chabini I. Discrete dynamic shortest path problem in transporta-tion applications[J ]. Trans porta tiuti Research Record . 1998,1645:170 - 175.
  • 7Davies C,Lingras P. Genetic algorithms for rerouting shortestpaths in dynamic and stochastic networks[J], European Journalof Operational Research ,2003, 144( 1) ; 27 - 38.
  • 8Narath B, Alt G Q, Kiichi T. The trade off between fixed vehi-cle costs and time-dependent arrival penalties in a routing problem transportation[J]. Research Part E ,2014 , 62:1 - 22.
  • 9Sandeep K,Diwakar P. Fuzzy programming approach to solvemulti-objective transportation problem[J], Advances in intelli-gent and Soft Computer >2012 * 130 ; 525 - 533.
  • 10Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a com-parative case study and the strength pareto approach [J], IEEETrans . on Evolutionary Computer,1999,3(4): 257-271.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部