期刊文献+

基于粒子群优化的目标分类算法 被引量:1

Target Classification Algorithm Based on Particle Swarm Optimization
下载PDF
导出
摘要 定义一个确定聚类数K和初始数据中心的算法,将由算法得到的初始数据中心作为初始粒子,用粒子群优化算法寻优,获得最优数据中心;使用模糊K-Means算法,采用最优数据中心进行聚类.在UCI数据集上的实验结果表明,算法能准确实现分类,具有较强的全局寻优能力和较快的收敛能力,寻优时间较少,能有效地解决目标分类问题. An algorithm defined for obtaining cluster count K and initial data center is proposed. The initial data center is used as the initial particle, and the particle swarm algorism is used to get the optimum data center; With the fuzzy K-Means algorism, the optimum data center is used for clustering. The experiment on UCI data set shows the method can realize classification accurately with the strong global optimization ability and rapid convergence ability. It has less optimizing time and can solve the goal classification problem effectively.
作者 穆瑞辉
出处 《新乡学院学报》 2013年第4期277-279,共3页 Journal of Xinxiang University
关键词 粒子群 目标分类问题 最优数据中心聚类 particle swarm target classification optimal data centre clustering
  • 相关文献

参考文献4

  • 1王旸,刘晓东,徐小慧,胡军.基于粒子群优化的数据分类算法[J].系统仿真学报,2008,20(22):6158-6162. 被引量:8
  • 2MACQUEEN J B.Some Methods for Classification and Analysis of Multivariate Observations[C]//Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability,New York:ACM Press,1967:281-297.
  • 3WANG W,YANG J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C]//Proc of the 23rd International Conference on Very Large Data BasesM,Erlin:Springer,1997:1-18.
  • 4姚金杰,韩焱.基于改进自适应粒子群算法的目标定位方法[J].计算机科学,2010,37(10):190-192. 被引量:9

二级参考文献21

  • 1刘静,钟伟才,刘芳,焦李成.基于组织协同进化分类算法的遥感图像目标识别[J].信号处理,2004,20(3):277-280. 被引量:2
  • 2De Jong K A, Spears W, Cordon D F. Using Genetic Algorithms for Concept Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 155-188.
  • 3Janikow C Z. A knowledge-intensive Genetic Algorithm for Supervised Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 189-288.
  • 4Holland J H. Escaping Brittleness: The Possibilities of Genetic Purpose Learning Algorithms Applied to Parallel Rule-based Systems [J]. Machine Learning (S0885-6125), 1986, 10(4): 593-623.
  • 5Wilson S. Classifier Systems and the Animate Problem [J]. Machine Learning (S0885-6125), 1987, 2(3): 199-228.
  • 6Kennedy J, Eberhart R C. Particle Swarm Optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, Perth, NJ, USA: 1EEE service center, 1995: 1942-1948.
  • 7Shi Y, Eberhart R C. A Aodified Particle Swarm Optimizer [C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, N J, Anchorage, AK, USA: IEEE service center, 1998: 69-73.
  • 8Swinburne R. Bayes's Theorem [M]. Oxford, UK: Oxford University Press, 2002.
  • 9UCI repository of machine learning databases [DB/OL]. http://www.ic s.uci.edu/-mlearn/MLRepository.html.
  • 10Juliet Juan Liu, James Tin-Yau Kwok. An Extended Genetic Rule Induction Algorithm [C]// Proceeding of IEEE Congress on Evolutionary Computation, San Diego, USA. USA: IEEE, 2000: 458 -463.

共引文献14

同被引文献6

  • 1唐培培,戴晓霞,谢龙汉.MATLAB科学计算及分析[M].北京:电子工业出版社,2012.
  • 2龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2012.
  • 3KENNEDY J, EBERHART R C. Particle Swarm Opti- mization: Proceedings of IEEE International Conference on Neural Networks, Perth, November 27-Decmber 1, t995[C1. Piscataway: IEEE Press, 1995.
  • 4SHI Y, EBERHART R C. Empirical Study of Particle Swarm Optimization: Proceeding of Congress on Computa- tional Intelligence, Washington DC, July 6-9, 1999 [C]. Piscataway: IEEE Press, 1999.
  • 5HATANAKA T, UOSAKI K, KOGA M. Evolutionary Computation Approach to Block Oriented Nonlinear Model Identification: 2004 5th Asian Control Conference, Melbourne, July 20-23, 2004 [C ]. Piscataway: IEEE Press, 2004.
  • 6刘俊芳,高岳林.带自适应变异的量子粒子群优化算法[J].计算机工程与应用,2011,47(3):41-43. 被引量:24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部