期刊文献+

采用KPCA和BP神经网络的单目车载红外图像深度估计 被引量:12

Depth estimation from monocular vehicle infrared images based on KPCA and BP neural network
下载PDF
导出
摘要 提出一种基于监督学习得到深度估计模型的单目车载红外图像深度估计方法。首先用核主成分分析法(KPCA)筛选红外图像特征。将最初提取的红外图像特征用核函数非线性映射到一个线性可分的高维特征空间,再完成主成分分析(PCA),得到降维后的红外图像特征。然后以BP神经网络为模型基础,对红外图像特征和深度值进行训练,训练后的深度估计模型可对单目车载红外图像的深度分布进行估计。实验结果证明,利用该模型估计的单目车载红外图像的深度信息与原红外图像的深度信息一致。 A depth estimation algorithm from monocular vehicle infrared image based on depth estimation model by supervised learning was proposed. Firstly, kernel-based principle component analysis (KPCA) was used to select infrared image features. Original features extracted from infrared image were project nonlinearly to a high dimensional and linear separable feature space using kemel function. Principle component analysis (PCA) was performed to get dimension reduction infrared image features. Then the infrared image features and depth values were trained using BP neural network. A depth estimation model was obtained which can estimate the depth distribution of monocular vehicle infrared image. The experimental results show that most of the depth estimated by the model is consistent with the original depth information of infrared image.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第9期2348-2352,共5页 Infrared and Laser Engineering
基金 国家自然科学基金(61072090) 上海市浦江人才计划(12PJ1402200) 中央高校基本科研业务费专项资金(12D10418)
关键词 深度估计 红外图像 KPCA BP神经网络 depth estimation infrared image KPCA BP neural network
  • 相关文献

参考文献4

二级参考文献46

  • 1张大志,王勇涛,田金文,王长青,郭勤.基于单目视觉系统的远距离场景重建算法研究[J].宇航学报,2008,29(1):289-294. 被引量:9
  • 2刘松涛,周晓东,杨绍清.基于元胞自动机的红外图像增强新方法[J].红外与激光工程,2006,35(z4):499-502. 被引量:5
  • 3曹聚亮,吕海宝,谭晓波,楚兴春.可保留图像细节的直方图修正法[J].中国图象图形学报(A辑),2004,9(5):631-635. 被引量:14
  • 4吴成柯 戴善荣.图像通信[M].西安:西安电子科技大学出版社,1990..
  • 5PIZER S.Adaptive histogram equalization and its variations[J].CVGIP (Computer Vision,Graphics,and Image Processing),1987,39(3):355-368.
  • 6Forsyth D A,Ponce J.Compmer vision:A modem approach[M].Englewood Cliffs,NJ,USA:Prentice Hall,2003.
  • 7Hertzmann A,Seitz S M.Example-based photometric stereo:Shape reconstruction with general,varying BRDFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1254-1264.
  • 8Ens J,Lawrence P.An investigation of methods for determining depth from focus[J].IEEE Transactions on Pattern Analyms and Machine Intelligence,1993,15(2):97-108.
  • 9Saxena A.Chung S H,Ng A Y.3-D depth reconstruction from a single still image[J].Compmer Vision,2008,76(1):53-69.
  • 10Hoiem D,Efros A A,Hebert M.Automatic photo popup[C]//32nd International Conference on Computer Graphics and Interactive Techniques.2005:577-584.

共引文献24

同被引文献104

  • 1陆波,毕笃彦,谭军.一种基于KPCA的图像去噪方法[J].红外技术,2004,26(6):58-61. 被引量:5
  • 2王艳,鲍建跃,林晓春,过润秋.基于FPGA的红外图像目标检测[J].西安电子科技大学学报,2005,32(3):403-407. 被引量:2
  • 3张海燕,李欣,田书峰.基于BP神经网络的仿真线设计及其FPGA实现[J].电子与信息学报,2007,29(5):1267-1270. 被引量:13
  • 4周锋飞,陈卫东,李良福.一种基于区域生长的红外与可见光的图像融合方法[J].应用光学,2007,28(6):737-741. 被引量:16
  • 5KLAUS A, SORMANN M, KARNER K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//International Conference on Pattern Recognition. 2006 : 15-18.
  • 6MLKI A, WATANABE M, WILES C. Geotensity Combining motion and lighting for 3d surface reconstruction [J] International Journal of Computer Vision, 2002,48(2) : 75-90.
  • 7PAYET N, TODOROVIC S. Scene shape from textures of objects[C] //The 24th IEEE Conference on Computer Vision and Pattern Recognition. 2011.. 20-25.
  • 8SAXENA A, SUN M, ANDREW Y N. Learning 3-D scene structure from a single still image [C]// IEEE llth International Conference. 2007: 1-8.
  • 9SAXENA A, SUN M, ANDREW Y N. Make 3D: Learning 3-D scene structure from a single still image [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5): 820-840.
  • 10SAXENA A, CHUNG S H, ANDREW Y N. Learning depth from single monocular images [ C ]//Neural Information Processing Systems. 2005: 1-8.

引证文献12

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部