期刊文献+

采用SIFT特征的高光谱数据自动几何精校正 被引量:5

Automatic geometric precision correction of hyperspectral data based on SIFT feature
下载PDF
导出
摘要 针对几何精校正过程中人工选取控制点误差大、未考虑高光谱数据光谱特征一致性等问题,提出了基于SIFT特征的自动几何精校正方法。首先提取图像的SIFT特征,利用高光谱数据的地理坐标定位进行局部特征匹配,然后为了进一步提取高精度、分布均匀的控制点,提出了一种分区域的随机采样一致(Random Sample Consensus,RANSAC)算法。利用航空高光谱成像仪Hymap获取的新疆东天山数据进行算法性能的分析与验证,并采用CE90/CE95以及均方根误差等指标进行定位精度的评价,提出的基于SIFT特征的自动几何精校正方法能够达到0.8像元的定位精度,并且校正前后光谱的光谱角小于0.01 rad。 Duo to including the ground control points that choosed by manual geometric precision correction were not precise, and the existing methods ignorded the spectrum consistency of hyperspectral data, an automatic geometric precision correction method based on SIFT feature was proposed to solve the problems. SIFT feature was extracted from the image and the geographic coordinate of the hyperspectral data was used to accomplish local feature matching. In order to extract high-precision and uniformly distributed ground control points, a sub-regional Random Sample Consensus (RANSAC) algorithm was proposed. The airborne hyperspectral data collected by HyMap in Dongtianshang, Xinjiang Autonomous Region, was used to analyze and validate the performance of the algorithm. The CE90/CE95 and root mean square error were calculated to evaluate the geopositional accuracy. The results show that the automatic geometric correction method based on SIFT feature can achieve 0.8 pixel geopositional accuracy, and the spectrum of the spectrum angle between warp image and corrected image is less than 0.01 radian.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第9期2414-2420,共7页 Infrared and Laser Engineering
基金 国家863计划(2008AA12121102 2009AA12Z119) 国家自然科学基金(61008047 61177008) 中国地质调查局项目(1212011120227) 长江学者和创新团队发展计划(IRT0705)
关键词 几何精校正 高光谱遥感 地面控制点 光谱一致性 定位精度 geometric precision correction hyperspectral remote sensing ground control point spectrum consistency geopositional accuracy
  • 相关文献

参考文献4

二级参考文献36

  • 1罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 2朱庆,吴波,万能,徐志祥,田一翔.具有良好重复率与信息量的立体影像点特征提取方法[J].电子学报,2006,34(2):205-209. 被引量:14
  • 3丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 4KELLER Y, AVERBUCH A, ISRAELI M. Pseu- do-polar based estimation of large translations rotations and sealings in images[J]. IEEE Transaction on Image Processing, 2005,14 (1) . 12-22.
  • 5SIGGEI.KOW S. Feature histograms for contentbased image retrieval [D].Frieiburg: Albert Lud wigs University of Frieiburg, 2002.
  • 6MIKOLAJCZYK K, SCHMID C. An affine invariant interest point detector[C]. Proceedings of the 7th European Conference on Computer Vision, 2002:128-142.
  • 7ZHANG Z Y, DERICHE R, FAUGERAS O. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [J]. Artificial Intelligence, 1995, 78 (2):87-119.
  • 8LOWED G. Distinctive image features from scale- invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2).91-110.
  • 9LINDEBERG T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision, 1998,30(2) :79-116.
  • 10KITTLER J,HATEF M,DOIN P R W,etal.. On combining classifier [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3) :226-239.

共引文献112

同被引文献43

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部