期刊文献+

基于流形学习的混合光谱解混分析 被引量:2

Analysis on spectral unmixing based on manifold learning
下载PDF
导出
摘要 光谱解混分析的重要研究内容是计算分析各地物类别成分在混合像素内所占的比例技术。文中以实测高光谱数据为研究对象,针对高光谱数据具有高维度数、严重的光谱混合等特点,基于流形学习中局部线性嵌入(LLE)算法的思想,提出了一种约束最小乘方局部线性加权回归(CLS-LLWR)建模方法。通过4种典型地物的光谱吸收特征差异分析,从它们不同比例组合下的实测混合光谱中选取了不同波段范围,分别对该模型预测覆盖度信息能力进行了验证分析。最后,将CLS-LLWR模型与主成分回归(PCR)和偏最小二乘回归(PLSR)模型,通过计算预测标准误差(SE)进行了对比分析。结果表明,CLS-LLWR模型有较好的预测能力。这为流形学习在高光谱遥感图像信息提取方面进行了有意的探索。 The main study on spectral unmixing is to develop a regression between mixed spectral features of main land-cover types and their responding fractional cover. Studying on in situ spectral reflectance data, based on one of the best known algorithms of manifold learning, locally linear embedding (LLE), a new modeling method named constrained least squares locally linear weighted regression (CLS-LLWR) was proposed. Spectral reflectance of four kinds of the mixed land-cover types in different percentages was measured and preliminarily analyzed. The model CLS-LLWR was verified by predicting fractional cover of main land- cover types. Compared with principal component regression (PCR) and partial least squares regression (PLSR), through comparison and analysis of the standard error of prediction(SE), the result shows that the CLS-LLWR has better predictability. This study indicates that manifold study has the potential for the information extraction of mixed land cover types in hyperspectral image.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第9期2421-2425,共5页 Infrared and Laser Engineering
基金 国家863计划(2009AA122002)
关键词 光谱解混 流形学习 局部线性加权回归 覆盖度 spectral umixing manifold learning locally linear weighted regression fractional cover
  • 相关文献

参考文献2

二级参考文献11

  • 1孔沐生,向健勇.编码孔成象与红外技术[J].红外与激光技术,1995,24(3):1-3. 被引量:4
  • 2Bellamy M K, Mortensen A N, Hammaker R M, et al. Chemical mapping in the mid-and near-IR spectral regions by Hadamard transform/FT-IR spectrometry [J]. Appl Spectrose, 1997, 51: 477-486.
  • 3DeVerse R A, Harnmaker R M, Fateley W G. An improved Hadamard encoding mask for multiplexed Raman imaging using single channel detection[J]. J Mol Struct, 2000, 521: 77-88.
  • 4Riesenberg R, Dillner U. HADAMARD imaging spectrometers [C]//SPIE, 1999, 3753: 203-213.
  • 5Wutfig A, Riesenberg R. Sensitive Hadamard transform imaging spectrometer with a simple MEMS [C]//SPIE, 2003,4881: 167-178.
  • 6Vujkovic-Cvijin, P, Goldstein N, Fox M J, et al. Adaptive spectral imager for space-based sensing [C]//SPIE, 2006, 6206: 62060X.
  • 7Goldstein N, Vujkovic-Cvijin P, Fox M J, et al. Spectral encoder: US, 7324196[P]. 2008-01-29.
  • 8王云萍,赵长明.基于DMD的动态红外景象仿真系统[J].红外与激光工程,2009,38(6):966-970. 被引量:21
  • 9邵秀娟,胡炳樑,闫鹏.Hadamard变换多谱段自适应光谱仪[J].红外与激光工程,2010,39(5):963-966. 被引量:8
  • 10林玉荣,王强.基于自适应权系数核方法的超光谱图像分类[J].红外与激光工程,2011,40(12):2535-2539. 被引量:2

共引文献7

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部