摘要
提出了一类求解带有箱约束的非凸二次规划的新型分支定界算法.首先,把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的.
In this paper, we present a class new branch and bound algorithm for solving nonconvex quadratic programming with box constrained. At the first, the objective func- tion of the original problem has a D.C.(two different of convex function) decomposition. Calculated an optimal value of the function which is linear lower bound approximation, i.e. a lower bound of the original problem. Then obtain an upper bound of the original problem by global ellipsoid algorithm. And then, by using the branch and bound algo- rithm, we can solve the original problem by solving a series of subproblems. Finally, the convergence is proved and numerical experiments show that the algorithm works well.
出处
《数学研究》
CSCD
2013年第3期311-318,共8页
Journal of Mathematical Study
基金
国家自然科学基金资助项目(61174216
61074091)
关键词
非凸二次规划
箱约束
分支定界算法
Nonconvex quadratic programming
Box constrained
Branch and boundalgorithm