期刊文献+

基于D.C.分解的一类箱型约束的非凸二次规划的新型分支定界算法 被引量:4

A New Branch and Bound Algorithm Based on D.C. Decomposition about Nonconvex Quadratic Programming with Box Constrained
下载PDF
导出
摘要 提出了一类求解带有箱约束的非凸二次规划的新型分支定界算法.首先,把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的. In this paper, we present a class new branch and bound algorithm for solving nonconvex quadratic programming with box constrained. At the first, the objective func- tion of the original problem has a D.C.(two different of convex function) decomposition. Calculated an optimal value of the function which is linear lower bound approximation, i.e. a lower bound of the original problem. Then obtain an upper bound of the original problem by global ellipsoid algorithm. And then, by using the branch and bound algo- rithm, we can solve the original problem by solving a series of subproblems. Finally, the convergence is proved and numerical experiments show that the algorithm works well.
出处 《数学研究》 CSCD 2013年第3期311-318,共8页 Journal of Mathematical Study
基金 国家自然科学基金资助项目(61174216 61074091)
关键词 非凸二次规划 箱约束 分支定界算法 Nonconvex quadratic programming Box constrained Branch and boundalgorithm
  • 相关文献

参考文献14

  • 1Bajirov A M, Rubinov A M. Global optimization of marginal functions with applica- tions to economic equilibrium. Journal of Global Optimization, 2001, 20(3-4): 215-237.
  • 2Konnoc H. Portfolio optimization problem under concave transaction costs and mini- mal transaction unit constraints. Mathematical Programming, 2001, 89(2): 233-250.
  • 3Sherali H D, Smith E P. A global optimization approach to a water distribution networ- k design problem. Journal of Global Optimization, 1997, 11(2): 107-132.
  • 4Pardalos P M, Vavasis S A. Quadratic programming with one negative eigenvalue is np-hard. Journal of Global Optimization, 1991, 1(1): 15-22.
  • 5Hansen P, Jaumard B, Ruiz M, Xiong J. Global minimization of indefinite quadratic functions subject to box constraints. Naval Research Logistics, 1993, 40(3): 373-392.
  • 6Yajima Y, Fujie T. A polyhedral approach for nonconvex quadratic programming pro- blems with box constraints. Journal of Global Optimization, 1998, 13(2): 151-170.
  • 7Le Thi H A, Pham Dinh T. A branch and bound method via d.c. optimization algo- rithms and ellipsoidal technique for box constrained nonconvex quadratic problems. Journal of Global Optimization, 1998, 13(2): 171-206.
  • 8Vandenbussche D, Nemhauser C L. A branch-and-cut algorithm for nonconvex quadrat- ic programs with box constraints. Mathematical Programming, 2005, 102(3):559- 575.
  • 9Vandenbussche D, Nemhauser (- L. A polyhedral study of nonconvex quadratic pro- grams with box constraints. Mathematical Programming, 2005, 102(3): 531-557.
  • 10Samuel B, Dieter V. Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Computational Optimization and Applications, 2009, 43(2): 181-195.

二级参考文献11

  • 1Xu Z B, Hu G Q, Kwong C P. Asymmetric hopfield-type networks,theory arid applications[J]. Neural Networks,1996, 9(3) :483--501.
  • 2Xu Z B, Kwong C P. Associative memories[A], ed by C T Leondes, Neural Networks :Techniques and Applications[C]. New York : Academic Press, 1998. 183-- 258.
  • 3Xia Y S. A new neural network for solving linear and quadratic programming problems[J]. IEEE Transactions on Neural Networks, 1996, 7 (6) : 1544-- 1547.
  • 4Zhang X S, Constantinides A G. Lagrange programming neural network[J]. IEEE Transactions on Circuits and Systems, 1992, 39(7): 441--452.
  • 5Wu X Y, et al. A high-performance neural network for solving linear and quadratic programming problems[J].IEEE Transactions on Neural Networks, 1996, 7(3): 643--651.
  • 6Liang X B, Wang J. A recurrent neural network for nonlinear optimization witha continuously differentiable objective function and bound constraints[J]. IEEE Transactions on Neural Networks, 2000, 11(6): 1251--1262.
  • 7Liang X B. A complete proof of global exponential convergence of neural network for quadratic optimization withbound constraints[J]. IEEE Transactions on Neuarl Networks, 2001, 12(3): 636--639.
  • 8Bouzerdoum A, Pattison T R. Neural network for quadratic optimization with bound constraints[J]. IEEE Transactions on Neural Networks, 1993, 4(2):293--303.
  • 9Xia Y S, Wang J. On the stability of globally projected dynamical systems[J]. Journal of Optimization Theory and Applications, 2000, 106; 129--150.
  • 10Xia Y S, Wang J. A general methodology for designing globally convergent optimization neural networks[J]. IEEE Transactions on Neural Network, 1998, 9 (6) : 1331-- 1343.

同被引文献25

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部