摘要
在小变形假定下,张弦拱结构的力学分析是线性问题.这样可以把一般解分解为两个独立解:简支扁拱仅在外荷载作用下的静定解、仅受拱与悬索间的相互作用力荷载下的解.张弦拱力学分析的通解即为这两个解之和.它仅含有未知悬索拉力增量水平投影的一次冪.利用拱两端锚固位置处,由拱和悬索分别计算的水平位移相等这一端位移协调条件,就可以得到一般计算公式.
According to the small deformation assumption, the raechanical analysis of arch string structures is a linear problem. So the general solution can be decomposed into two independent solutions: the statically determinate solution of the simple supported flat arch under external load and the solution under the interaction force between the arch and cable. The general solution of arch string structures is the sum of the two independent solutions whose only unknown quantity is the first power of the horizontal projection of cable force. The general calculation formula can be obtained based on the displacement coordination condition at the anchorage position of arch that the horizontal displacement of arch and cable should be equal.
出处
《空间结构》
CSCD
北大核心
2013年第3期45-48,38,共5页
Spatial Structures
关键词
张弦拱
简支扁拱
外荷载静定解
相互作用力荷载静定解
端位移协调条件
arch string structures
flat arch
statically determinate solution under external load
staticallydeterminate solution under interaction force
horizontal displacement compatibility conditions