期刊文献+

一种基于改进Snake模型的边界检测方法 被引量:2

Improved Snake Model in the Depression Boundary Detection
下载PDF
导出
摘要 基于原始Snake模型提出一种改进Snake模型的边界检测方法.该方法通过引入一个能自动控制外力大小的权值,令其与图像梯度大小成正比,通过Laplace算子将梯度信息扩展到更远的均匀区域,扩大了Snake演化曲线的搜索范围,使演化曲线在加权外力的作用下能进入到目标深度凹陷的区域.通过OpenCV实验表明,改进的Snake模型能较好地收敛到待分割目标深度凹陷的边界,同时提高了收敛速度,改善了原始Snake模型难以捕获凹陷边界的问题. We introduced a weight which can automatically control the external force of the Snake model is proportional to the size of the image gradient. Then we used Laplace operator to extend the gradient information to further area, thus expanding the search range of the Snake evolution curve so as to make the evolution curve get into the depressed area under the weighted external force. In OpenCV, the experiments show that improved Snake model can converge to the depression boundary of the target, by which convergence speed is increased. Thus our model solves the difficulty to capture depression border compared with the original Snake model.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第5期904-907,共4页 Journal of Jilin University:Science Edition
基金 吉林省科技发展计划项目青年科研基金(批准号:201201112) 符号计算与知识工程教育部重点实验室开放基金(批准号:93K172013201)
关键词 图像分割 边界检测 SNAKE模型 LAPLACE算子 image segmentation edge detection Snake model Laplace operator
  • 相关文献

参考文献8

  • 1LI Qing, YANG Jun-feng, JIANG Han-hong, el al. A Segmentation Method Based on Snake Model [J]. Journal of Wuhan University of Technology: Information 8-- Management Engineering, 2006, 28 ( 11 ) : 168-171.
  • 2Kass M, Witkin A, Terzopoilos D. Snakes: Active Contour Models [J]. Int J Comput Vis, 1987. 1(4): 321-331.
  • 3XU Chen-yang, Prince J 14 Snakes, Shapes, and Gradient Vector Flow [J]. IEEE Transactions on Image Processing, 1998, 7(3): 359-369.
  • 4Cohen L D. ()n Active Contour Models and Balloons [JT. CVGIP: Image Understanding, 19!)1, 53(2) : 211-218.
  • 5XU Chen-yang, Prince J I: Gradient Vector Flow: A New External Force for Snakes [-(']//Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition. Washington: IEEE ('omputer Society, 1997 66-71.
  • 6Prince J I., XU Chen-yang. A New External Force Model for Snakes [C]//Proceedings of the Image and Muhidimensional Signal Processing Workshop. l.ondon: [s. n. ], 1996 : a0-31.
  • 7WANG Pei. Research on Technique of Medical hnage Segmentation Based on Active Contours Model [D]. Harbin: Harbin Institute of Technology, 2010.
  • 8JIAN Jiang-tao. Deformation Model Technology and Its Application in Medical Image Segmentation[D]. Hefei: University of Science and Technology of China, 2007.

同被引文献27

  • 1王元全,汤敏,王平安,夏德深,徐晔.Snake模型与深度凹陷区域的分割[J].计算机研究与发展,2005,42(7):1179-1184. 被引量:16
  • 2石澄贤,曹德欣.自适应气球力主动轮廓的图像分割[J].中国矿业大学学报,2007,36(1):69-74. 被引量:3
  • 3冈萨雷斯.数字图像处理[M].3版.北京:电子工业出版社,2011.
  • 4KASS M, WITKIN A, TERZOPOULOS D. Snakes: Active contour models [J ]. International Journal of Computer Vision, 1987, 1(4): 321-331.
  • 5COHEN L D,COHEN I. Finite element methods for ac- tive contour models and balloons for 2D and 3D images [J]. IEEE Trans. PAMI, 1993, 15(11): 1131 - 1147.
  • 6XU Cheng-yang,PRINCE J L. Snakes, shapes and gra- dient vector flow [J]. IEEE Trans. Image Processing, 1998, 7(3): 359-369.
  • 7XU Cheng-yang, PRINCE J L. Generalized gradient vector flow external forces for active contours [J]. Sig- nal Processing, 1998, 71(2): 131- 139.
  • 8ZHANG Fan, ZHANG Xin-hong, CAO Kui. Contour extraction of gait recognition based on improved GVF Snake model [J]. Computers & Electrical Engineering, 2012, 38(4): 882-890.
  • 9WANG Yuan-quan, LIU Li-xong, ZHANG Hua, et al. image segmentation using active contours with normally biased GVF external force [J]. IEEE Signal Processing Letters, 2010, 17(10): 875-878.
  • 10SREEMATHY R, PATIL R S. Segmentation of left ventricle in cardiac MRI using Snake and GVF Snake [J]. International Journal of Engineering Science and Technology, 2011, 5(3): 4102-4107.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部